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Abstract

A new method of surrogate construction is developed and applied to a pair of computational

tools used in the field of aircraft design. This new method involves the pairing of data sampled

from the analytical model of interest with the execution of a similar analysis performed at a lower

level of fidelity. This pairing is accomplished through the use of a space mapping technique, which

is a process where the design space of a lower fidelity model is aligned a higher fidelity model. The

intent of applying space mapping techniques to the field of surrogate construction is to leverage the

information about a system’s performance present at a lower fidelity level to bolster the predictive

accuracy of a surrogate model based upon sampled data at a higher fidelity level. The results from

the pairing of computational tools used in this research show modest gains in predictive accuracy

for many of the cases investigated when compared to existing surrogate methodologies.
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A Method of Surrogate Model Construction which Leverages Lower-Fidelity

Information using Space Mapping Techniques

I. Motivation

The field of aircraft design has progressed at an astonishing pace since the Wright brothers

first designed and flew their Wright Flyer on the sand dunes of Kittyhawk, North Carolina.

Advancements in the understanding of aeronautics, propulsion, material mechanics, controls,

electronics, computer science, and many other fields have propelled aircraft design from its humble

origins to the technological marvels seen in flight today. The challenge of aircraft design is pushing

many of these engineering disciplines to the edge of our understanding and experience. Future

aircraft require innovative technologies to push the bounds of performance to new heights. These

aircraft designs must take advantage of, or be able to withstand, the various physical phenomena

affecting the system. To better design and analyze future aircraft, commercial and government

agencies interested in the development of future aircraft have invested resources in the development

of computational design frameworks that will allow them to model the system and its environment.

Many of these design frameworks incorporate computational tools which yield similar outputs,

but calculate their responses at differing levels of fidelity. Fidelity, in the context of analytical

design tools, is the degree to which the physical phenomena relevant to the system are accounted

for within the analysis. At the highest levels of fidelity, the design team is modeling as much of the

physical environment and its interactions with the system as the program can afford in a

resource-constrained environment. Higher fidelity in an analytical tool almost always comes at a

higher price, be it in man-hours, computational resources, or the time required for the analysis to

complete. For this reason, design frameworks may also incorporate lower fidelity computational

tools so performance parameters of the system can be approximated at an affordable fidelity level

for the appropriate phase of the design cycle. These multifidelity design and analysis programs

allow the design team the option of choosing the fidelity of the analysis based on the particular

application and the current phase of the design cycle.

The ability to execute an analysis of the design at a lower fidelity level presents advantages

and disadvantages to the design of the system. One such advantage offered by incorporating lower

fidelity tools is how relatively inexpensive these tools are compared to their higher fidelity

counterparts. In many cases, the cost of executing the lower fidelity tools is such that the design

1



team can afford to execute design variable sweeps to gather trend data, or even apply an

optimization routine to the system’s design parameters. The information gleaned from the lower

fidelity tools is often the basis for decisions made in the conceptual design phase about the

system’s top-level configuration. One disadvantage associated with using lower fidelity tools to get

this information is the risk of excluding potentially relevant analyses contained in the higher

fidelity tools. As a result, innovative system configurations may be excluded from consideration in

the early phases of the design cycle due to the ignorance of the lower fidelity tools to the more

complicated physical phenomena affecting the system. A simplification of a design cycle for an

aircraft is shown in Figure 1, which illustrates the cost and level of fidelity associated with each

phase of development.

Figure 1. Infographic comparing the cost of execution and the levels of fidelity for
different phases in the design cycle of an aircraft

In order to mitigate this risk, the Aerospace Vehicles Directorate of the Air Force Research

Laboratory (AFRL/RQ) is searching for ways to represent the information in the higher fidelity

levels earlier in the design cycle without incurring the full cost of exhaustively executing the higher

fidelity tools. Such a development would allow the tools at the higher levels of fidelity to influence

the design space of the system in phases of development where many of the system-level

configuration decisions are made. The major obstacle in the development of such a methodology is
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approximating the information at the higher levels of fidelity at costs which do not prohibit

activities like design space exploration or system-level optimization.

One possible route to bring high-fidelity information into earlier phases of the design cycle is

the construction of surrogate models to approximate the high-fidelity response. As is often the case

in the conceptual design phase, the actual performance numbers output by the analyses are less

important than the trends generated from parametric sweeps of the design parameters. A good

surrogate model of a high-fidelity analysis, while only providing approximations at point locations,

would retain the same overall trend information as the high-fidelity model. This higher fidelity

information would in turn influence the choices made by the design team in an earlier phase of

development. A generic representation of a surrogate model is shown in Figure 2, which illustrates

how a surrogate model accepts the same inputs as the analytical model being imitated and

produces an approximation of the analysis’ response.

Figure 2. Generic representation of a surrogate model in parallel with the analysis
being approximated

Surrogate construction is a field of study in itself, and [1] is an excellent resource on modern

techniques. The general process used in surrogate construction involves some method of sampling

the high-fidelity model to generate the data on which the surrogate is based. The accuracy of any

given surrogate model typically improves as the number of sampled points increases. However, this

can be costly especially if the analyses are computationally expensive. This trade-off between the

accuracy of the surrogate model and the cost of its construction presents a difficult decision for a

design team, because additional sampling of the high-fidelity model does not guarantee any

appreciable increase in surrogate accuracy.
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This thesis presents a new method of surrogate synthesis that uses sampled data from a

high-fidelity model paired with a low-fidelity model with space mapping techniques. This surrogate

construction method is derived and explained in detail, and several applications of this

methodology are presented. Chapter IV presents three conceptual applications of this theory using

fabricated analytical models that were useful in the development and debugging of the space

mapping algorithm presented in Chapter III. In Chapter V, this surrogate formation method is

employed using tools made available by the Multidisciplinary Science and Technology Center

(MSTC) within AFRL/RQ, and the results are compared with established surrogate construction

techniques to determine what benefits, if any, this new method might offer a design team.

On a practical note, much of the literature pertaining to the subjects of surrogate construction

and space mapping refer to the analytical model(s) employed in general terms because the

methods themselves are meant to be applicable in a very general sense. As a result, the

terminology and symbolism used in the derivation of these methods can be confusing. A section in

the Appendix of this document serves to clarify the nomenclature. This section has been

partitioned so the variables and their definitions match the appropriate sections of Chapters II and

III to provide a more useful resource to the reader when navigating this document.
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II. Background and Theory

To set the stage for the development of this new method for surrogate construction, the

commonly accepted practices of surrogate modeling are reviewed. The following sections provide

quick summaries of techniques that are applied in one form or another in the methodologies of this

research. This chapter ends with a summary of a space mapping technique available in the

literature which forms the foundation for much of this research.

Least-Squares Projections

In 1795, Friedrich Gauss developed a process for determining the best fit of linear coefficients

to a general set of data, and this process has profoundly impacted most every scientific field since

[2]. This process is known as the least-squares fitting of data, and is accomplished through the use

of a projection matrix. Least-squares is still a popular method for approximating solutions to

over-determined systems. An over-determined system of equations occurs when the number of

equations is greater than the number of unknowns. The process of least-squares is often used to fit

a linear model to data in the presence of noisy measurements, where the random noise on the

measurements prohibits the solution to the system of equations through simple linear algebra.

The least-squares process is important to this research because it is a simple and powerful tool

for fitting data to a prescribed analytical form. This is crucial to the space mapping process in

Chapter III. To better understand the least-squares process, consider the following set of data

developed as an illustrative example in Table 1.

Table 1. Noisy Measurements

x̄ ȳ z̄

0.1517 0.3244 0.3772
0.1079 1.5886 0.8641
1.0616 0.6224 1.142
1.5583 1.0571 3.4421
1.868 0.3313 1.5041
0.2598 1.204 2.1154
1.1376 0.5259 1.7403
0.9388 1.3082 3.2392
0.0238 1.3784 0.5586
0.6742 1.4963 2.0559
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The z data were generated according to the following equation, which is a simple linear

combination of the x and y variable values, plus a random element to simulate the presence of

noise in the measurement.

z = C̄(1)x+ C̄(2) y + {random ⊂ [−1, 1]} where C̄(1) = C̄(2) = 1 (1)

If there were no noise in any of these measurements, then the coefficients C̄(1) and C̄(2) in the

equation above could be deduced using Gaussian elimination. In the presence of noise however, not

all of the equations are in perfect alignment with the assumption that z is a linear combination of

x and y. To approximate the linear coefficients in the presence of noise, the least-squares process

can be used.

The first step is to cast the problem in matrix form, as shown in Equation 2. Since there are

coefficient values for this system of equations that will exactly fit the data collected, a least-squares

fit determines the coefficient values that minimize the error between the gathered data and the

resulting linear model. This can be seen in Figure 3, where the data points are shown as blue

circles, and the linear approximation is shown as the mesh surface. The lines connecting the data

points to the linear approximation represent the error between the data and the linear model:

A C̄ = z̄ where A = [ x̄ ȳ ]. (2)

The least-squares fitting of data works through the use of a projection matrix. The derivation

of this projection matrix is an interesting topic for study because in its derivation this matrix is

shown to minimize the total error between the gathered data and the linear model through a single

analytical process (rather than requiring some number of iterations). See [3] for a detailed

derivation of the projection matrix and greater detail into the least-squares process. The

projection matrix is formed according to the equation below.

PA =
(
ATA

)−1
AT (3)

Once the projection matrix is formed, the linear coefficients are determined through the following

expression:

C̄ = PA z̄. (4)
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The linear model derived by this least-squares approach for the system shown in Table 1 is

z = C̄(1)x+ C̄(2) y = 1.084x+ 0.933 y. (5)

Figure 3. Illustration of Least-Squares Approximation

The least-squares process is not limited in the number of variables (or columns in the A

matrix) which allows for least-squares fitting of data that are functions of many variables. Many of

the mathematical forms employed in the space mapping implementation make use of a

least-squares fit to determine the parameters within a particular P. The least-squares approach is

beneficial to this research because the minimization of error between the data and the approximate

model is conducted in a single step. Methods for non-linear least-squares approximations exist, but

these methods require some number of iterations to determine the coefficients and powers which

minimize the error between the data and the approximation.

Polynomial Response Methodology

In cases where access to data is limited, surrogate models can be generated from the existing

data to make estimates at unknown locations in the design space by fitting a polynomial response

through a least-squares projection. This type of surrogate technique is a subset of Polynomial

Response Methodology (PRM). In this process, the surrogate model for the true response is

represented by a linear combination of certain quantities. These quantities are derived from the

inputs to the model being approximated, and the form for each quantity is left to the user to

decide. If the coefficients in the polynomial form are determined in a least-squares sense, then the
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polynomial must be linear with respect to these quantities. The choice of the form for each

quantity allows the polynomial to be nonlinear with respect to the design variables. From this

point forward, any reference to the order of a polynomial form is always with respect to the design

variables [4].

In general, a polynomial of the k th degree can be fit to a collection of data, provided there is

enough data to produce an over-determined system of equations. The appropriate degree of

polynomial to implement is often decided through experience or can be determined through the

use of estimated error variances. The mathematical form of this polynomial can be represented as

R(x̄) =

p∑
i=1

 k∑
j=1

(
Cj(i) x̄(i)j

)+ C0 (6)

where R(x̄) is the response of the polynomial, p is the number of variables in the system, and k is

the polynomial degree being applied. Using the same variables from Table 1 and assuming a

first-order polynomial fit results in the equation:

C1(1)x+ C1(2) y + C0 (7)

while a second-order fit results in the equation:

C2(1)x2 + C2(2) y2 + C1(1)x+ C1(2) y + C0. (8)

The advantage of the least squares process is the ability to determine the best coefficient values

for a kth order polynomial in a single linear algebra operation (see Equation 4). For polynomial

degrees of two and higher, the A matrix shown in Equation 2 needs to be expanded to include the

elements of the data raised to the appropriate power. A more general form for this matrix is

A =


x̄1(1)k x̄p(1)k x̄1(1)k−1 x̄p(1)k−1 x̄1(1) x̄p(1) 1

↓ · · · ↓ ↓ · · · ↓ · · · ↓ · · · ↓ ↓

x̄1(q)k x̄p(q)
k x̄1(q)k−1 x̄p(1)k−1 x̄1(1) x̄p(1) 1

 (9)

and the dimensions of the matrix are [q × (k · p+ 1)], where q is the number of observed data

points and p is the number of variables in the function being approximated. For a second-order

(k = 2) fit to the data in Table 1, the A matrix is shown in Equation 10. The projection matrix for
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any given polynomial degree can be calculated by forming the appropriate A matrix using

Equation 9 to insert into Equation 3.

A =


x̄(1)2 ȳ(1)2 x̄(1) ȳ(1) 1

↓ ↓ ↓ ↓ ↓

x̄(10)2 ȳ(10)2 x̄(10) ȳ(10) 1

 (10)

Users of polynomial response surfaces must be aware, unless the observed data were generated

from a polynomial function, there is model error associated with any polynomial fit. This is due to

the fact the observed data will almost never align perfectly with a polynomial formula, either

because the process under consideration is more complex than the polynomial form will allow, or

because of the presence of noise in the data. The only knowledge available for the process being

modeled is the observed data points, and the error between these data points and the polynomial

response. This error is called the actual absolute error [5], and is determined by

eact = |z̄ − ẑ| (11)

where z̄ is a vector of observed data points and ẑ is a vector of polynomial responses for the same

variable values.

The true error at a new position cannot be known without first observing another data point

at the same position. Making this new observation is impractical, since the requirement for a

polynomial response surface infers an unwillingness or inability to observe additional data on the

part of the design team. Estimation of the error at a new position is possible, however, by

calculating the standard error (or the square root of prediction variance). This predicted error is

given by the equation [5]:

ees(x̄) = ±σ
√
fT(x̄) (ATA)

−1
f(x̄) (12)

where σ is the standard deviation of the error between observed data and polynomial

approximations and f(x̄) is a vector of variable values raised to the appropriate power.

fT(x̄) =
[
x̄(1)k · · · x̄(p)k , x̄(1)k−1 · · · x̄(p)k−1 , → x̄(1)2 · · · x̄(p)2 , x̄(1) · · · x̄(p) , 1

]
. (13)

σ is calculated using the Equation 14, where z̄ is the observed data, R̄ is the polynomial response

at the same positions as z̄, q is the number of observed data points, and the quantity (kp+ 1)
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represents the number of coefficients in the polynomial approximation [5]. Note the standard error

measure shown in Equation 12 is a localized value and therefore dependent upon the position

being evaluated. This estimation of error at a point could be useful in choosing the best PRM

surrogate model to apply at a given location.

σ =

√(
z̄ − R̄

)T (
z̄ − R̄)

)
(q − (kp+ 1))

(14)

Kriging

Kriging is an interpolation method developed in the field of geostatistics. Geoff Bohling, with

the Kansas Geological Survey, describes kriging as “optimal interpolation based on regression

against observed z values of surrounding data points, weighted according to spatial covariance

values [6].” The process is heavily rooted in linear regression analysis, with the distinction of

choosing the weighting associated with sampled data points in an optimal fashion. The general

form for a linear regression estimator is

z∗(x̄)−m(x̄) =

q∑
α=1

λα [z(x̄α)−m(x̄α)] (15)

where z∗(x̄) is the estimate of z at some location x̄, m(x̄) is the expected value at some location x̄,

q is the number of sample data points, λα is the weighting coefficient associated with each sample

data point, z(x̄α) is the z value at the sample location x̄α, and m(x̄α) is the expected value of z at

the sample location x̄α [7]. Kriging uses this same form, but makes use of a covariance matrix

constructed from the sample locations to choose weighting coefficients (λα) such that the variance

of the estimate for z∗(x̄) is minimized.

A covariance matrix is a collection of the covariances between the sample data points.

Covariance is calculated between two random variables and is the degree to which one variable

trends in the same direction as the opposing variable. A positive covariance value indicates an

increase in one of the variables likely correlates to an increase in the other variable. The covariance

matrix used in the kriging process is calculated for the same random variable, z(x̄), to determine

how the value of each sample point is correlated to the other sample points. The formula used to

construct this covariance matrix is

Kij = cov (z(x̄i), z(x̄j)) = E [( z(x̄i)−m(x̄i) ) ( z(x̄j)−m(x̄j) )] (16)
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where K is the covariance matrix, and E is the notation for the expected value of the expression

enclosed in brackets [6].

The goal in choosing the weighting coefficients in the kriging process is to minimize the

variance of the resulting estimate:

σ2
z(x̄) = var {z∗(x̄)− z(x̄)} . (17)

The expected value for the quantity z∗(x̄)− z(x̄) is zero, which is called the unbiasedness

constraint [6]. The sample data points can be viewed as the sum of two components, a trend

component (m(x̄)) and a residual component (r(x̄)):

z(x̄) = r(x̄) +m(x̄). (18)

The expected value for the residual component is also assumed to be zero. The covariance of the

residual component is assumed to be stationary, which means the covariance between sample

points is a function of lag, h̄, but not position, x̄ .

cov
{
r(x̄) , r(x̄+ h̄)

}
= E

{
r(x̄) · r(x̄+ h̄)

}
= CR(h̄) (19)

This residual covariance function is usually determined from the user’s choice of correlation

function and should ideally represent the residual component of the sample data points [6]. A

correlation function is a model that represents the dependence of the sample data points z(x̄) on

the values in the location vector (x̄), and the choice of this model is an important assumption,

which affects the kriging estimates between sample data points [8].

There are many different variants of the kriging process, but an explanation of simple kriging

suffices here. The main difference between the variants of kriging is the manner in which they treat

the trend component of the sample data, m(x̄) [7]. Simple kriging treats the trend component as a

constant value equal to the average value of the sample data points.

m(x̄) =

∑
z(x̄)

q
= m (20)
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Equation 15 can now be rewritten as

z∗(x̄) = m+

q∑
α=1

[λα (z(x̄α)−m) ] . (21)

The estimation error is then calculated as z∗(x̄)− z(x̄), and can be represented as a linear

combination of the difference between the estimated residual and the sample residual at each

sample location (r∗(x̄α)− r(x̄α) as α varies from 1 to q).

z∗(x̄)− z(x̄) = [z∗(x̄)−m]− [z(x̄)−m] (22)

= r∗(x̄)− r(x̄) (23)

=

q∑
α=1

[λαr(x̄α)]− r(x̄) (24)

Applying the mathematical rules governing the variance of a linear combination of random

variables, the variance of the error can be calculated by:

σ2
error = var {r∗(x̄)}+ var {r(x̄)} − 2 cov {r∗(x̄) , r(x̄)} (25)

=

q∑
α=1

q∑
β=1

λα λβ CR(x̄α − x̄β) + CR(0)− 2

q∑
α=1

λα CR(x̄α − x̄β). (26)

Equation 26 is the quantity minimized in the kriging process through the proper selection of values

for λ. To minimize this quantity, the derivative of Equation 26 with respect to λα is taken and set

to zero. The result is the following system of equations [6]:

q∑
β=1

λβ CR(x̄α − x̄β) = CR(x̄α − x̄β) for α = 1 to q. (27)

The values for the covariance between sample data points is determined using Equation 19, and

the system of equations shown in Equation 27 can be written in matrix form as

K λ̄ = k̄ (28)

where K is the covariance matrix for the sample data, and k̄ is the vector of covariance values

between the sample data points and the estimation point. The weighting coefficients that minimize
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the variance of the error estimate can then be found by solving for λ̄:

λ̄ = K−1 k̄. (29)

The estimate at a given location is given by Equation 21 with the appropriate weighting

coefficients applied.

Kriging is a variant of an interpolation method, and as such the process shares the same

properties common to all interpolation techniques. The accuracy of the estimate is dependent

upon the locations of the sample points relative to the estimation point. Good estimates using any

interpolation technique require a sufficient number of appropriately distributed sample points in

the region of interest. If the sample point locations are biased or clustered, then an interpolation

routine (kriging or otherwise) will not yield accurate estimates away from the sampled data [6].

Kriging does offer some distinct advantages over other interpolation techniques. The minimum

variance of the estimation error at the sample data locations equals zero because the true value of

z(x̄) is known. As a result the kriging model will match the values of the sample locations

perfectly, which is not true of other interpolation routines. Due to the manner in which the

weights for each sample point are derived, kriging applies reduced weighting to points within data

clusters as opposed to solitary data points. Since the kriging process involves minimizing the

estimation error variance in Equation 26, a kriging model yields not only an estimate at a given

location but also the variance of the estimation error at that location [6]. This allows for a kriging

model to provide both an estimated value at a location in the design space, and a measure of how

accurate the kriging model is at that location.

Space Mapping

The concept of space mapping was developed by Dr. John Bandler in 1993; space mapping

has been used in various engineering applications over the years. Since its introduction, numerous

teams and individuals have contributed to the advancement of the techniques employed in space

mapping, and Bandler et al. have published a paper detailing many of these achievements [9]. As

background for this thesis, this section will outline the space mapping technique listed in [10],

which hereafter is referred to as the “traditional” space mapping approach. This space mapping

approach has been used at Sandia National Laboratories in the implementation of a multifidelity

analysis infrastructure [10].
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The purpose of space mapping is to align the response of a low-fidelity (or coarse) model with

the response of a high-fidelity (or fine) model over some region of the design space. This alignment

is achieved by mathematically relating the inputs of the low-fidelity model, x̄L, to the inputs of the

high-fidelity model, x̄H .

x̄L = P(x̄H) (30)

such that

RL(x̄L) ≈ RH(x̄H). (31)

RL is the response of the low-fidelity model and is, through the variable relationship P, a function

of the high-fidelity design vector. RH is the response of the high-fidelity model.

A traditional space mapping approach begins with an assumption of the form for the variable

relationship, P. This relationship can take on any formula deemed appropriate by the user. One of

the simpler forms for P is for each low-fidelity design variable to be a linear combination of the

high-fidelity design variables. This is the form assumed for this space mapping overview.


x̄L(1)

...

x̄L(n)

 =


φ1,1 · · · φ1,p

...
. . .

...

φn,1 · · · φn,p



x̄H(1)

...

x̄H(p)

 −→ x̄L = Φ x̄H (32)

One important aspect of the space mapping process employed at the Sandia National

Laboratories is the ability to relate design vectors of different lengths. In Equation 32, the lengths

of x̄L and x̄H are not required to be equal. The low-fidelity design vector has n elements, the

high-fidelity design vector has p elements, and for the purposes of this research p ≥ n.

The next step in the space mapping process is to query the high-fidelity model to obtain a

response for various design variable values. Once these high-fidelity responses have been collected,

the space mapping process calls for a minimization sequence. This step seeks the parameters

within the mathematical relationship P that cause the response of the low-fidelity model to be

approximately equal to the high-fidelity response. This minimization process is shown in the

equation:

min
P

J =

q∑
j=1

[
RH(x̄Hj )−RL(P(x̄Hj ))

]2
(33)

This minimization process seeks to minimize the total error between the queried high-fidelity

responses and the responses from the low-fidelity model. The degrees of freedom in this

14



minimization process are the parameters within P, while the design variables associated with each

high-fidelity response are held constant. The output of this process is a collection of parameter

values for P that most closely replicate the high-fidelity responses gathered using the low-fidelity

model as a surrogate.

Once a reliable space mapping has been derived between the two models, it is possible to

approximate the response of the high-fidelity model for a given x̄H by executing the low-fidelity

analysis using the variable relationship assumed in Equation 30. The low-fidelity model, in

conjunction with the space mapping relationship, can then act as a surrogate analysis for the

high-fidelity model. This can be advantageous if the expense of running the high-fidelity model

precludes its use in an optimization scheme or design space exploration.
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III. Methodology

Space mapping is the process of relating the variables in the low-fidelity model to the variables

in the high-fidelity model such that the difference between the two models is minimized. The

variable relationship P is a mathematical formula, and so a traditional space mapping approach

makes an assumption as to what form this relationship takes. This research develops and explores

an alternative method of space mapping which does not require an assumption of the particular

form for P. Rather, this modified space mapping algorithm allows for multiple variable

relationships to be assumed through the fitting of mathematical models to data gathered in the

new process. The resulting space-mapped surrogate models can be evaluated with respect to each

model’s ability to approximate the high-fidelity response. Thus, the best performing form for the

variable relationship P can be determined without the need for multiple space mapping iterations.

Assumptions and Limitations

As in many engineering applications, the methods discussed in this research have been built

upon certain assumptions. As a result, these methods are also limited in the scope of their

application by the bounds of the assumptions made. A list of assumptions and their associated

limitations have been compiled in Table 2. The first assumption, and likely the most important, is

the one buried at the core of any space mapping process: these methods require a pair of analyses

that calculate the same parameter at differing levels of fidelity and computational expense.

Without this analytical pairing, the methods employed within this research will be impossible to

implement.

An additional assumption to the space mapping process for this research is that all of the

low-fidelity variable definitions are present in the high-fidelity variables. This assumes the

high-fidelity model always has at least as much information about the system as the low-fidelity

model. This assumption results in the concept of shared design variables, which are those design

variable definitions (not the design variable values) that are common between the two models. The

presence of shared design variables leads to the ordering of the high-fidelity design vector elements

as follows:

x̄H =

 x̃L

x̃H

 (34)
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Table 2. List of assumptions and associated limitations

# Assumption Limitation
1 Appropriate pairing of similar Space mapping process is not applicable without

high and low-fidelity models this specific analytical pairing
2 All variables in the low- Exclusion of model-pairings where the low-

fidelity model are also present fidelity model contains inputs not present
in the high-fidelity model in the high-fidelity model

3 The sampled points in the high- Poor distribution of sample points will result in
fidelity space capture the an inaccurate space mapping, which will yield
necessary information for a inaccurate predictions of the high-fidelity
viable space mapping response

4 Both the high and low-fidelity Exclusion of models with discontinuous design
design spaces are continuous spaces

where x̃L is the vector of shared design variables and x̃H is the vector of additional design

variables present in the high-fidelity model (but not present in the low-fidelity model). Note that

the low-fidelity design vector x̄L is assumed to have the same dimensions as the shared design

variables x̃L as defined in Equation 34. From a practical standpoint, the presence of the

low-fidelity variables in the high-fidelity design vector greatly simplifies a step in the optimization

process. This optimization process is discussed in further detail in the section devoted to the

modified space mapping algorithm.

A key component in any space mapping approach is the sampling of the high-fidelity design

space. Only a limited number of data points are taken from this design space due to the relative

expense of running the high-fidelity model. Each data point is crucial to the space mapping

process because it represents information about the high-fidelity design space that is passed to the

low-fidelity design space through the space mapping. The goal in the sampling of the high-fidelity

design space is to gain the necessary information for the least number of points. The validity of

any given space mapping is, in a sense, a reflection of how well the sampling process gathered the

necessary information from the high-fidelity design space. As a result, there is an ever-present

balancing act between the number of points that are affordable to the design team and the number

of points required for a sufficiently accurate space mapping. Without prior knowledge of the design

space, the goal of attaining information as cheaply as possible is best served through an even

distribution of sampled points within set variable boundaries. Two common methodologies for

achieving an even distribution of samples are orthogonal arrays and latin hypercube sampling.

Orthogonal arrays have the advantage that they ensure coverage of the sample space boundaries,
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while latin hypercube spacing adds a degree of randomness to the sampling that helps prevent

aliasing effects. This research uses the latter method, which is implemented through an algorithm

included in the dace Matlab extension [8]. An excellent description of the latin-hypercube

sampling methodology (complete with Matlab code) can be found in [1].

The gradient-based optimization process required in this space mapping approach carries an

assumption that the design space of each model is continuous in the region of interest. In general,

a gradient-based optimization scheme uses first or second-order derivative information to

determine the direction of the optimum point. These mathematical foundations make

gradient-based optimizers ill-equipped to handle instantaneous changes in first or second-order

derivatives. Certain gradient-based optimization routines may include algorithms to help optimize

a solution in the presence of discontinuities, but no such tools were implemented in this research.

As a result, the methods to be outlined in this thesis are employed using continuous analytical

models. A genetic algorithm in place of a gradient-based optimizer might eliminate this limitation,

but this alternative was not explored in this research.

Modified Space Mapping Approach

The traditional space mapping approach assumes a form for the variable relationship and uses

the optimization sequence outlined in Equation 33 to determine the parameters within P. Given a

sufficiently pliable relationship for P, this process has yielded viable space mappings [10]. The

alternative space mapping approach developed in this research changes the algorithm such that the

variable relationship P is not chosen until after the minimization process has taken place. Not

assuming a form for P going into the minimization sequence requires modifications to the space

mapping algorithm and the objective function for the minimization. Rather than perform a single

minimization to reduce the total error between the sampled high-fidelity data and the

space-mapped low-fidelity model, this new process performs a minimization sequence for each

high-fidelity data point taken.

While the traditional approach allows the optimizer to change the parameters within an

assumed form of P, the modified approach allows the optimizer to directly change the low-fidelity

variables themselves. Since the optimizer changes the values of the low-fidelity variables, the

output of each minimization sequence is a vector of low-fidelity variables associated with the vector

of high-fidelity variables that resulted in a particular data point. Each data point has a

minimization sequence to produce an optimal low-fidelity design vector (labeled x̄∗L) that

18



minimizes the difference between fidelity levels. The accumulation of these low-fidelity design

vectors and their associated high-fidelity design vectors is the data used in the space mapping

process. The objective function for each of these minimization sequences is

min
x̄L

J = [RH(x̄H)−RL(x̄L)]
2
. (35)

In addition to the optimal low-fidelity design vector, the optimization process shown in

Equation 35 also yields the residual difference between the high and low-fidelity responses. There

will be instances in which the low-fidelity model is incapable of attaining the magnitude of the

response seen in the high-fidelity model over the region of the design space in which P is derived.

In these circumstances, the vector of residual differences will be nonzero and each vector element

can be associated with the x̄H that resulted in the appropriate RH . The residual differences can

then be approximated using the same techniques used to fit forms to the low-fidelity variables. The

residual differences are calculated at the end of each minimization sequence by the equation

∆R = RH(x̄H)−RL(x̄∗L). (36)

This information is used to construct a model of the local difference between fidelity levels as a

function of the high-fidelity design variables. In keeping with the nomenclature for space mapping

techniques, the model for the local difference between fidelity levels is referred to as ∆P. The

output of this local difference model is then superimposed upon the space-mapped low-fidelity

response to better approximate the high-fidelity response, as shown in Figure 4.

Figure 4. Illustration of a space mapped surrogate model receiving the same in-
puts as the high-fidelity analysis to produce an approximation of the high-fidelity
response
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The collection of low and high-fidelity design vectors shown in Table 3 can be interpreted as a

collection of outputs (the elements of the low-fidelity design vector and the residual difference) for

a given collection of inputs (the high-fidelity design vectors). If each variable in the collection of

optimal low-fidelity design vectors is considered independently, then an analytical form (either a

polynomial or kriging surface) can be fit for that specific low-fidelity design variable. Since the

minimization sequences changed the low-fidelity design variables rather than the parameters of an

assumed P, the form of the space mapping relationship for each low-fidelity design variable can be

either chosen by the user or determined by a comparisons of total error values for a number of

relationships. In this modified version of space mapping, the form of the variable relationship is a

post-processing task that does not require additional executions of either the high or the

low-fidelity analysis for new forms of P to be fit to the data.

Table 3. Collection of data from the modified space mapping algorithm

# outputs inputs
low-fidelity residual high-fidelity

design vectors differences design vectors

1 x̄∗L1
(1) · · · x̄∗L1

(n) ∆R̄(1) x̄H1
(1) · · · x̄H1

(p)

2 x̄∗L2
(1) · · · x̄∗L2

(n) ∆R̄(2) x̄H2(1) · · · x̄H2(p)

↓ ↓ ↓ ↓
q x̄∗Lq (1) · · · x̄∗Lq (n) ∆R̄(q) x̄Hq (1) · · · x̄Hq (p)

Modified Space Mapping Algorithm

The process for the modified space mapping approach is divided into three main tasks, with

each task consisting of several steps: sample the high-fidelity model, execute the minimization

sequences to gather the data, and form (and evaluate) some number of variable relationships. Each

task is composed of numerous steps which are outlined in this section. The end result of this space

mapping process is a variable relationship, x̄L = P(x̄H), and an approximation for the residual

difference, ∆P(x̄H), that allows the low-fidelity analysis to approximate the high-fidelity response

(within the bounds of the design space over which the space mapping was derived). A flowchart

showing the three tasks within the space mapping algorithm is shown in Figure 5.
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Figure 5. Modified space mapping algorithm, shown with inputs and outputs for
each task

Task 1: Sampling the High-fidelity Design Space

Any space mapping process begins with a sampling of responses from the high-fidelity design

space. This sampling process is the means by which information about the higher fidelity response

as a function of the design variables is gathered. The distribution of these sampled points within a

subset of the overall design space is vitally important to the accuracy of the variable relationship

produced. The goal for the sampling process is to capture the significant design space contours of

the high-fidelity response for the least number of points. This goal is best served by evenly

distributing the sampled points within a subspace of the overall design space.

The first step in the sampling process (step 1.1 in Figure 6) is to define the bounds of this

subspace. This is accomplished by setting upper and lower boundaries for the high-fidelity design

variables. This is followed by sampling points within this defined subspace (step 1.2), where the

sampling function will assign variable values within the bounds set by the user. The importance of

the sampling process cannot be overstated due to the desire to be as efficient as possible in the

gathering of information from the high-fidelity subspace. In the hopes of efficiently sampling the

subspace, the algorithm implemented in this research makes use of the lhsu() function that is

included in the dace Matlab software extension [8]. This function generates a group of sample

high-fidelity design vectors using a latin hypercube sampling methodology (the u character in lhsu

stands for “uniform”, which refers to its use of the uniform distribution).

Once some number of evenly-distributed design vectors have been generated (the number of

samples is designated q), step 3.1 is to generate a high-fidelity response for each sampled design
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Figure 6. Steps that compose the first task in the modified space mapping process

vector from the previous step. The number of samples required to obtain a reliable space mapping

will change based on the particular models being used and is likely dependent upon numerous

factors, some of which are the variability of the high-fidelity design space in the region of interest

and the relative variability between the low and high-fidelity model within the shared design space.

The number of sampled points required for a reliable space mapping is a reflection of how much

information from the higher fidelity is absent at the lower fidelity level. The exact characterization

of this behavior was not investigated in this research. The number of sampled points required in

the application of this process is noted, but there was no research towards predicting the

appropriate number of samples. If this theory proves to be useful in a design environment, then

the prediction of required sample points would be a relevant area for future work.

Task 2: Execute the Minimization Sequences

Once q number of points have been sampled from the high-fidelity design space, the

minimization sequences can begin. The first step within this task is the scaling of the high-fidelity

design variables through a process known as standardization (step 2.1). The purpose of scaling the

design variables prior to the minimization sequence is to aid the optimizer in the search for x̄∗L.

The scaling of the design variables alleviates some of the problems that gradient-based optimizers

face when dealing with variables of significantly different magnitudes. A discussion on the merits

of scaling the design variables, complete with a mathematical explanation for the benefits of

scaling in an optimization context, can be found in [11]. An illustration of the steps required in

Task 2 is shown in Figure 7.
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Figure 7. Steps that compose the second task in the modified space mapping process

The scaling for this space mapping approach is accomplished using a process known as

standardization (or normalization). This process is widely used in the field of regression analysis

and allows for the different orders of magnitude in the variables to be adjusted to a “standardized”

scale. If the variables are scaled to a standardized order of magnitude, the optimizer can more

easily determine the correct direction in the design space for the minimization of the objective

function. The formula for the standardization of a given x value pulled from a sample population

of x values is shown below

xscaled =
x− µx
σx

(37)

where µx is the expected value of x and σx is the standard deviation of the sample. The expected

value of x is calculated as the average value of the sample population.

The minimization sequences within Task 2 only require the scaling of the shared design

variables. This is due to the fact that the objective function for each minimization (see Equation

35) only requires the low-fidelity design variables. The additional design variables at the higher

fidelity level were required to calculate RH , but these variables are not explicitly present in the

objective function. In Task 3A, where the variable relationship P is assumed to be a kth degree

polynomial, the algorithm does require all of the high-fidelity design variables to be scaled, so the

process diagram shown in Figure 7 includes the scaling of all the design variables within Task 2.
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The purpose of the minimization sequences in step 2.2 is to gather the data needed to fit P

and ∆P in subsequent steps. A distinct minimization process will take place for each high-fidelity

data point sampled, which means there will be q minimizations in total. The computational cost

associated with this space mapping process up to this point consists of the cost of executing q

high-fidelity analyses (Task 1) plus however many low-fidelity analysis calls are required in the

minimization sequences (Task 2). The first two tasks in the modified space mapping algorithm

represent the bulk of the computational expense. At the completion of the second task, each

sampled high-fidelity design vector has an associated low-fidelity design vector and residual

difference between fidelity levels. The pairings of each low-fidelity design vector and residual

difference with the appropriate high-fidelity design vector constitute the dataset to be used in the

final task.

Each minimization sequence requires a starting position in the shared design space (a starting

location within the design space is required of any gradient-based optimization scheme). Earlier an

assumption was made that the two analyses, while at different levels of fidelity, share some degree

of similarity in the shared design space. Following this assumption, the starting point in the

low-fidelity design space is set to the same location of the shared design space where the

high-fidelity data point was sampled. The degrees of freedom for each minimization process are the

scaled low-fidelity design variables, so the starting location for each minimization sequence consists

of the scaled shared design variables in x̄H . The use of scaled variables in the optimization process

requires the code that calculates the objective function to reverse the scaling process before

executing the low-fidelity analysis.

At the completion of Tasks 1 and 2, the user has a collection of high-fidelity design vectors

paired with low-fidelity design vectors and residual differences. These pairings are the data used in

the final task of the space mapping algorithm. At this point, the user may choose the form of the

variable relationship P that is believed to best fit the data collected. Three options are explored in

this research, as shown in Figure 8.

Task 3A defines P as a kth degree polynomial whose coefficients can be determined in a

least-squares sense. Task 3B assumes a nonlinear polynomial form for P that requires an

optimization sequence to determine the correct parameter values within P. Task 3C assumes a

highly nonlinear form for P where each low-fidelity design variable is represented by a kriging

approximation of the variable data gathered in Tasks 1 and 2. With the exception of the

calculation of total error, the fitting of the data to a specific variable relationship form does not
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Figure 8. Steps that compose the final task in the modified space mapping process

require any additional executions of either the high or low-fidelity models. The total error

calculation requires q additional low-fidelity analysis calls, as discussed in this section.

Task 3A: Least-Squares Polynomial Fit

The first step in the fitting of a least-squares polynomial to the data is to construct the

projection matrix, PA. This requires the formation of the appropriate A matrix for the

user-selected polynomial degree. The projection matrix is calculated using Equation 3 and is used

in step 3.2 to determine the coefficients for the polynomial form. The vector C̄ is comprised of

coefficients for each variable raised to each power as well as an offset, which means this vector has

a length of (k p+ 1).

C̄i = PA


x̄∗L1

(i)

...

x̄∗Lq (i)

 ( for i = 1 : n ) (38)

This vector is also specific to the low-fidelity design variable currently being related to the

collection of high-fidelity design vectors, which means the complete space mapping includes n

number of C̄ vectors. These steps are summarized in the Figure 9.

The second output from Task 2 is the vector ∆R̄ containing the residual differences between

the sampled high-fidelity responses and the low-fidelity responses for the design variables

determined in step 2.2. These residual differences are also fit to a polynomial approximation

equivalent to the ones formed for each low-fidelity design variable. This results in a vector of
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Figure 9. Steps specific to the least-squares polynomial form for P

coefficients (defined as D̄) found in the same manner as Equation 38.

D̄ = PA


∆R̄(1)

...

∆R̄(q)

 ( for i = 1 : n ) (39)

The final step in Task 3A is the calculation of total error between the sampled high-fidelity

data points and the response of the space mapped surrogate model. The error calculation is

optional, but recommended for cases where multiple mapping forms are applied to the same

dataset of associated low and high-fidelity design variables (from Tasks 1 and 2). The total error

value is a measure of how well the resulting surrogate model approximates the known information

from the high-fidelity design space and can be used to determine the best performing surrogate

model. It is important to note the surrogate model with the lowest total error is assumed to be the

best performer, but the user will never definitively know which surrogate performs best without an

extensive interrogation of the high-fidelity design space. The formula to calculate the total error is

shown below

Et =

q∑
j=1

∣∣R̄H(j)−
(
RL
(
P(x̄Hj )

)
+ ∆P(x̄Hj )

)∣∣ (40)
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where ∆P is the polynomial approximation of the residual differences (∆R̄) as a function of the

high-fidelity design variables and the polynomial coefficients D̄.

Task 3B: Nonlinear Polynomial Fit

Figure 10. Steps specific to the nonlinear polynomial form for P

While the steps in Figure 10 depict a particular nonlinear form, the process shown to

determine the parameters of P is not specific to any given mathematical form. The form chosen

for this research is a mapping formula recommended in [10],

x̄L(i) = φ̄ix̄
β̄i
H + γ(i) (41)

where i is the element of the low-fidelity design vector, φ̄i is a vector of coefficients, β̄i is a vector

of powers, and γ(i) is a scalar offset. Once a form for P has been determined, the next step is to

determine the parameters of P using an optimization process. An optimizer seeks to find the

parameter values of P that minimize the following objective function:

min
φ̄i,β̄i,γ

J =

q∑
j=1

∣∣∣x̄∗Lj (i)− (φ̄i x̄β̄iHj + γ(i)
)∣∣∣ (42)
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where x̄∗Lj (i) is the low-fidelity design variable found in Task 2 that is associated with the x̄Hj

sampled in Task 1.

The same relational form is then applied to the residual difference vector to derive a formula

for ∆P. The difference between fidelity responses is approximated by the formula:

∆P = φ̄∆x̄
β̄∆

H + γ∆ (43)

The parameters of this relationship are determined through a similar optimization process as was

shown previously.

min
φ̄∆,β̄∆,γ∆

J =

q∑
j=1

∣∣∣∆R̄(j)−
(
φ̄∆ x̄β̄∆

Hj
+ γ∆

)∣∣∣ (44)

Once the parameters for P for each low-fidelity design variable and the parameters for the residual

difference approximation ∆P have been determined, the same total error calculation shown in

Task 3A is performed (Equation 40).

Task 3C: Nonlinear Kriging Fit

The final space mapping form investigated in this research constructs a kriging model for each

low-fidelity design variable as well as for the residual error between fidelity levels. In order to

define a kriging model for a low-fidelity design variable, a vector is formed of the appropriate

element in x̄∗L from all of the design vectors output from Task 2. Going back to the symbolic data

in Table 3, this vector is a single column of outputs. These vector elements are treated as the

output from some model, and each element is some unknown function of the high-fidelity design

variables that are the inputs in Table 3. This unknown function that relates the vector elements to

the high-fidelity design vectors is modeled with a kriging approximator, resulting in a kriging

model that can predict the value of that specific element in x̄∗L as a function of x̄H . Each

low-fidelity design variable (or each column of outputs in Table 3) has a kriging model associated

with it, as will the residual difference between fidelity levels (as shown in Figure 11).

Due to the nature of kriging approximations, the step for calculation of the total error is

removed from the implementation of this particular space mapping form. Kriging approximations

have the unique property of being exact at the sampled points. This means that at each of the

sampled high-fidelity design vectors, the resulting space-mapped low-fidelity design vector is

exactly equal to x̄∗Lj and the approximation for the residual difference between fidelity levels is
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exactly equal to ∆R̄(j). Thus, the total error calculation shown in Equation 40 is always zero for a

kriging model implementation.

Figure 11. Steps specific to the nonlinear kriging space mapping form

While this makes a comparison between a kriging space mapped surrogate to other surrogates

impossible using a total error calculation, the lack of a comparison is likely inconsequential. The

kriging process requires a relatively large number of sample points (as compared to a low-order

least-squares polynomial), but the resulting surface fits are generally more reliable than a

polynomial surface fit. The better performance is a result of the incredible ability of a kriging

model to fit to amorphous design contours that simply cannot be approximated well by a

polynomial response. In short, if the user is able to afford the requisite number of points to

generate a kriging space mapping relationship then the resulting surrogate model is very likely to

be more accurate than any polynomial counterparts.

Surrogate Construction Through Space Mapping

Assuming the variable relationship and residual difference approximation are accurate over the

region in which they were derived, the low-fidelity model in concert with the space mapping can be

used as a surrogate model for the high-fidelity response. While the process of space mapping

requires q high-fidelity analysis calls and a greater number of low-fidelity analysis calls, the end

result can be applied as a surrogate to approximate the high-fidelity response at the computational

29



expense of the low-fidelity analysis. This provides the potential for optimization and design space

explorations at a higher level of fidelity than was previously achievable due to the expense of the

high-fidelity analysis.

The algorithm described in this chapter was developed in the hopes of leveraging information

from a lower fidelity model to improve the accuracy of a surrogate model based on higher fidelity

data. Chapter IV presents the application of this algorithm to synthesized high and low-fidelity

model-pairings. Chapter V presents the application of this algorithm to a pair of analytical models

in use in the aircraft design community at present. The resulting space-mapped surrogate models

are then compared to surrogate models constructed using only the data from the high-fidelity

model.
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IV. Conceptual Applications

The first step of this research was the implementation of the theories outlined in Chapter III

using analytical models defined specifically for this purpose. This step was necessary for the

refinement of the algorithms used as well as an early investigation of the applicability of this

method of surrogate construction. This chapter introduces the reader to the analytical models

employed, the specific algorithm used, and the results of these conceptual applications.

High-fidelity and Low-fidelity Model Pairs

Three pairs of analytical models were formed for the purpose of demonstrating the algorithm

detailed in Chapter III. Each pair consists of two models that serve as proxies for a high-fidelity

and low-fidelity analytical tool set. It was important in the development and debugging of the

theories and algorithms discussed in Chapter III for the analytical models to be computationally

inexpensive yet retain an inherent relationship between the two models. The intention was for

these conceptual applications to differ from the ESAV-relevant pairing used in Chapter V in

computational expense only.

Case 1: 2-D Lift model vs. 3-D Lift model

The first model pair makes use of two related methods for the prediction of lift. The

low-fidelity model is defined as the equation for predicting the lift of a two-dimensional airfoil.

RL =
1

2
ρ V 2 S CLα α (45)

The high-fidelity model is defined as the equation for predicting the lift of a three-dimensional

airfoil.

RH =
1

2
ρ V 2 S

(
Clα

1 +
57.3Clα
π eAR

)
α (46)

The low-fidelity analysis uses a lift-curve slope, CLα , equal to the two-dimensional lift-curve slope,

Clα . In the high-fidelity analysis, the lift-curve slope is a function of the two-dimensional lift-curve

slope, the efficiency factor of the wing, and the aspect ratio of the wing. The variable definitions

for the high and low-fidelity models have been collected in Table 4.
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Table 4. Variables present in the Case 1 analytical models

symbol definition
shared variables
ρ density of air
V velocity
S planform area
CLα lift-curve slope
α angle of attack

additional variables
e efficiency factor
AR aspect ratio

These two models were chosen because the relationship across fidelity levels is approximately linear

with respect to angle of attack, illustrated in Figure 12.

Figure 12. Difference in lift predictions by model (variables that are held constant
are listed in Table 13 in the Appendix)

Case 2: 2-D Lift Model vs. 2-D “Saddle” Function

For the second pair of analytical models, the low-fidelity analysis proxy from the Case 1 model

pairing was retained (Equation 45). For the high-fidelity analysis proxy, a modification to Equation

45 was crafted to introduce a nonlinear relationship between fidelity levels yet keep the same

number of additional variables as Case 1. The additions to the 2-D lift equation are shown below:

RH =
1

2
ρ V 2 S CLα α sin (x̄H6

) ((x̄H7
− 1)2 + 1). (47)
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Using Equation 47 as the high-fidelity proxy is beneficial because the relationship between fidelity

levels changes depending upon the region of the design space. In a small region centered at values

of 90 degrees for x̄H6
and 1 for x̄H7

the two analysis methods return approximately the same

output, but for any other area of the design space the output values may vary drastically. The

“saddle” title for this high-fidelity model refers to the appearance of the response surface when

plotted against x̄H6
and x̄H7

(seen in Figure 23).

Case 3: Truncated peaks() vs. peaks() Function

The final pairing of analytical models include the peaks() function in Matlab and a

truncated version of the peaks() function for the high and low-fidelity models, respectively. These

two models are useful in a conceptual application because the functions are dependent upon only

two variables, which allows for a visual interpretation of the responses for the high-fidelity model,

each surrogate model being evaluated, and the low-fidelity model. The equations for the peaks()

function and the truncated peaks() function are shown below (the first term in Equation 48 is

purposefully missing in Equation 49).

RH = 3 (1− x)2 e(−x2−(y+1)2) − 10 (
x

5
− x3 − y5) e(−x2−y2) − 1

3
e(−(x+1)2−y2) (48)

RL = −10 (
x

5
− x3 − y5) e(−x2−y2) − 1

3
e(−(x+1)2−y2) (49)

The two models can be compared qualitatively through an inspection of their response

surfaces plotted over the x and y variables (Figure 13). The low-fidelity model resembles its

high-fidelity counterpart, but there is a single peak near the origin absent in the low-fidelity

response. The truncation of the peaks() function is supposed to represent a scenario where the

low-fidelity model is capable of providing a reasonable estimate of a real-world response over the

majority of the design space. The added fidelity represented by the additional peak in the

high-fidelity model is symbolic of the model’s ability to capture a high-order physical phenomenon

absent in the low-fidelity model.

33



Figure 13. Visual comparison of the peaks() function versus the truncated peaks()

function

Surrogate Model Comparison

The space mapping theory detailed in Chapter III is implemented on each of the three

model-pairings just discussed. The following sections evaluate the performance of the resulting

space-mapped surrogates in terms of the total error calculation (Equation 40) as well as a

comparison of the high-fidelity and space-mapped surrogate response surfaces generated over the

region in which P and ∆P were derived. A qualitative comparison is generated by plotting the

high-fidelity response against two of the design variables; the remaining design variables are held at

constant values for plotting purposes. The associated quantitative comparison is the root mean

square error (RMSE) between the high-fidelity response and the space-mapped surrogate response.

The RMSE is calculated by taking the squared difference between the high-fidelity response and

the space-mapped surrogate response at each intersection in the plotting grid and then summing

each of these errors. The plotting grid is held at a constant size for each model pairing case so a

direct comparison can be made.

The choice of what specific optimization scheme to use within the space mapping algorithm is

left to the user. The optimizer used in Task 2 for the model-pairings is the unconstrained

minimization function fminunc() included in the optimization software package for Matlab . The

options available within fminunc() were not varied to reduce the number of low-fidelity analysis

calls required in the minimization sequence. Unless otherwise stated, the specific optimization

34



algorithm within fminunc() was set to sequential quadratic programming (SQP), and the

tolerance for the change in value of the objective function was set to 1× 10−5 for all cases. It is

entirely possible the number of calls to the low-fidelity analysis could be reduced through a more

tailored approach to the minimization sequence, but this was not attempted in this analysis. For

each case, and for each space mapping form, the number of high and low-fidelity analysis calls will

be documented.

In the fitting of a nonlinear variable relationship described in Task 3B, there is an additional

optimization process by which the parameters of P and ∆P are determined. The selection of an

optimizer for this process is also left to user; for the conceptual applications shown below the

genetic algorithm toolbox included in the optimization software package for Matlab was used.

Due to the standardization process applied to the design variables, approximately half of the scaled

high-fidelity variable values will be negative. Initial attempts to raise the scaled high-fidelity design

variables with negative values to non-integer powers resulted in complex numbers. These complex

numbers were not useful in the context of the algorithm presented in Chapter III. A genetic

algorithm has the ability to handle integer quantities, which proved useful in the selection of the

powers (β̄) listed in Equation 41 for negative variable values. The upper boundary for the element

value of β̄ is set to the appropriate degree of least-squares polynomial (for the number of sampled

points, q) + 1, while the lower boundary is always set to 1.

Case 1 Space-Mapped Surrogate Models

Tasks 1 and 2 in the modified space mapping algorithm do not vary in implementation for the

various assumed variable relationships, except for the number of sampled points. The upper and

lower variable boundaries set in Task 1 for the sampling process are listed in Table 15 in the

Appendix for each case. The first variable relationship assumed for the three model-pairings is the

least-squares kth polynomial. This process begins with an investigation into the number of

high-fidelity responses required for different degrees of polynomials. The high-fidelity model has 7

design variables, and the least-squares fitting of coefficients requires at least 8 high-fidelity

responses to create an over-determined system. In practice, however, the number of sampled

high-fidelity data points (sampled by the latin hypercube spacing algorithm) was set to 12. More

data points are recommended due to the erratic behavior seen in the response surfaces generated

by 8 data points, as seen in the following figure. The surrogate models shown for the Case 1 model
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pairing are plotted against the efficiency factor and the aspect ratio design variables. The

high-fidelity response is the blue surface, and is generated by executing the high-fidelity function

over the established ranges for efficiency and aspect ratio while holding the five shared design

variables constant at the values listed in Table 14 in the Appendix. The gray surface is the

surrogate generated using the low-fidelity analysis in conjunction with the space mapping as shown

in Figure 4. The values for the variables held constant in the production of the response surfaces

shown in subsequent figures are in Table 14 in the Appendix.

Figure 14. Visual comparison between two surrogate models with q = 8 where (a)
is considered a “good” fit while (b) is considered a “poor” fit

The results were more repeatable when the number of sampled points was increased to 12.

The instability of the resulting space-mapped surrogate behavior is a result of the random

sampling process, which does not capture the necessary information from the higher fidelity level

with the minimum number of samples from the design space. Increasing the number of sampled

points increases the odds the sampled points will impart the relevant information to the lower

fidelity design space. An example of a first-order polynomial space-mapped surrogate model using

12 sampled points is shown in Figure 15.

The first-order polynomial space-mapped surrogate captures the overall trends of the higher

design space rather well. A first-order space mapping performs well in this context because the

effects of the two additional design variables, efficiency factor and aspect ratio, are approximately
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Figure 15. First-order polynomial space-mapped surrogate model using 12 sampled
points

linear over the range of variable values under consideration. For model-pairings where the

additional design variables do not affect the design space in a linear manner, a first-order space

mapping will not likely yield a sufficiently accurate surrogate model. The number of high and

low-fidelity analysis executions associated with the space mappings shown thus far are shown in

the following table.

Table 5. Number of high and low-fidelity analysis calls for the first-order space
mappings of the Case 1 model pairing

q high-fidelity low-fidelity Figure
executions executions

8 8 330 Figure 14a
8 8 330 Figure 14b
12 12 486 Figure 15

Next, a second-order polynomial is fit to the space mapping data and compared with a

first-order polynomial fit using the total error calculation. Extrapolating the number of required

sampled points from the lessons learned in the first-order case, the number of sampled points is set

to 24 for this space mapping. The computed total error for the first-order and second-order

polynomial space mappings are 15.608 and 7.965, respectively. The RMSE generated by the two

surrogates shown in Figure 16 are 1,723.5 for the first-order polynomial and 646.7 for the

second-order polynomial. These error calculations imply the second-order polynomial yields a more
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accurate approximation of the high-fidelity response. This additional accuracy is gained at the cost

of executing the high-fidelity analysis 24 times, and the low-fidelity analysis 984 times.

Figure 16. Visual comparison between surrogate models using a first-order and
second-order least-squares space mapping

For the Case 1 model pairing, the total error for a given polynomial degree decreased as the

degree of the polynomial form increased. The largest decrease in total error follows the transition

between a first-order and a second-order polynomial form, with smaller decreases for each

additional increase in k. The number of sampled points for the Case 1 model-pairing is set to 12

times the polynomial degree, which means for the data presented in Figure 17 each error

calculation is the sum of all errors for 120 sampled points. The tenth-degree polynomial space

mapped surrogate response is included in the Appendices (Figure 49). The number of low-fidelity

analysis calls for q = 120 was 4,896.
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Figure 17. Total error calculations for each degree of polynomial fit to the space
mapping data, q = 120

If the total error calculation is divided by the number of sampled points, the average error per

sampled point can be used to compare space mappings using different numbers of sampled

high-fidelity data points. Figure 18 shows this comparison metric for the Case 1 model pairing.

The data in the figure were taken from single executions of the space mapping algorithm. Since the

sampled high-fidelity design vectors are chosen through a latin-hypercube sampling method, there

will be some variation in the error values for repeated executions of the space mapping algorithm.

The data in the chart are not averaged values over multiple space mapping runs; the figure is

intended to convey the trend that the error per point generally decreases as the degree of the

polynomial increases.

Figure 18. Average Errors per sampled point for a range of q showing a general
decrease in error per point as the polynomial degree is increased
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Using the same sampled data points as the surrogate model depicted in Figure 15 (where

q = 12) and executing Task 3B results in the surrogate model shown in Figure 19. The maximum

value for any element in the powers vector (β̄) is set to 2, which is higher than the appropriate

value of k for a least-squares polynomial fitting with only 12 sampled points. The nonlinear form

returned is predominantly first-order due to the approximately linear response of the high-fidelity

response itself. As a result, the surrogate models from Tasks 3A and 3B are very similar in

appearance. The RMSE for the two responses are 2518.1 and 5201.7 for the least-squares

polynomial and the nonlinear polynomial form, respectively. These RMSE values imply that the

least-squares space mapping provides the better surrogate model for this model pairing and

number of sampled points.

Figure 19. Comparison between the surrogate models constructed assuming (a) a
least-squares polynomial and (b) a nonlinear space mapping for q = 12

Applying the steps in Task 3B to the same sampled points as for the surrogate model in

Figure 16 (q = 24) and setting the maximum value for any element in β̄ to 3 results in the

surrogate model shown in Figure 20b. The process in Task 3B found the best variable relationship

for many of the low-fidelity variables to be a linear one (powers equal to one, rather than two).

The resulting surrogate model seems to perform poorly compared to the least-squares surrogate

shown in Figure 20a. This is interesting because the initial expectation for this nonlinear form was
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for the resulting surrogate model to be as good if not better than the surrogate model from the

least-squares polynomial. Upon closer inspection, the least-squares variable relationship is better

equipped (for this specific application) to capture the variable relationship due to the presence of

all available powers for each high-fidelity variable. The coefficients that deal with the offset and

the multipliers for the first-order design variables are able to capture the approximately linear

relationship between the two fidelity levels. The coefficients that multiply the second-order design

variables are then able to make more minute corrections, resulting in the better performing

surrogate model depicted in Figure 16 and Figure 20a.

The nonlinear form prescribed in Task 3B, however, is limited to a single coefficient and a

single power for each high-fidelity design variable. This leads the genetic algorithm to choose a

predominantly linear relationship because this is the best fit for the data in this limited polynomial

form. It should be noted that the process outlined in Task 3B can be applied to any particular

form for a variable relationship. A different form, or even multiple forms, can be implemented at

the discretion of the user and compared using the space mapping process outlined in Task 3B. The

RMSE errors for the surrogates shown in Figure 20 are 646.7 and 3027.7 for the second-order

polynomial and the nonlinear polynomial form, respectively.

Figure 20. Comparison between the surrogate models constructed assuming (a) a
least-squares polynomial and (b) a nonlinear space mapping for q = 24
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The final space mapping relationship to be applied to the Case 1 model pairing is the

nonlinear kriging form outlined in Task 3C. For a kriging model to be fit to the data collected in

Tasks 1 and 2, a minimum of 36 high-fidelity data points are required (for reasons having to do

with the rank requirements of a matrix in the kriging process). The number of sampled points is

therefore set to 38 to be conservative and to allow for a more consistent space-mapped surrogate

model. For a q = 38, the number of low-fidelity analysis calls was 1,560. As expected, the

surrogate model built using the kriging relationship is the best performing surrogate model (from

both a qualitative and quantitative standpoint). A third-degree polynomial is plotted for

comparison (k = 3 is appropriate for the number of sampled points and this model pairing). The

RMSE values for the surrogates shown in Figure 21 are 417.1 and 34.6 for the third-order

least-squares polynomial and the kriging space mapping relationships, respectively.

Figure 21. Comparison between the surrogate models constructed assuming (a) a
least-squares polynomial and (b) a nonlinear space mapping using kriging models
for q = 38

There is a problem of practicality associated with the kriging form used in Task 3C that

deserves mentioning. The initiation of a kriging model requires a set number of sampled data

points from the high-fidelity model, and this set number is typically larger than the number of

samples required in either Tasks 3A or 3B. When executing Task 3C, the number of sample points

required to fit kriging models to each low-fidelity design variable is the same number required to fit
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a kriging model to the high-fidelity response. As such, it is only fair to compare the surrogate

model derived from a kriging implementation of space-mapping with a traditional kriging surface

constructed from the actual high-fidelity responses (RH). For the Case 1 model pairing, the

traditional kriging model performs better than the space-mapped surrogate when comparing the

RMSE values (17.6 for the traditional kriging model as compared to 34.6 for the space-mapped

surrogate). The qualitative comparison between the two response surfaces is shown in Figure 22.

Figure 22. Comparison between the surrogate models constructed through (a) a
kriging implementation of space mapping and (b) a traditional kriging model acting
as a surrogate

Case 2 Space-Mapped Surrogate Models

While the first model pairing exhibits an approximately linear relationship between the

fidelity levels, the second model pairing was engineered to exhibit a nonlinear relationship with

respect to the additional variables in the high-fidelity model. The model pairing is nicknamed the

“saddle” pairing because of the distinctive features of the high-fidelity response when plotted

against the two additional design variables, x̄H6 and x̄H7 . In the subsequent plots which compare

the high-fidelity response to the space-mapped surrogate models, the high-fidelity response surface

is calculated by holding the shared variables constant (see Table 14) while varying the two
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additional design variable values over the ranges shown in the plots. As before, the blue surface

depicts the high-fidelity response while the gray surface depicts the surrogate response.

Figure 23. High-fidelity model response over a range of values for x̄H6
and x̄H7

The first space mapping explored for this model pairing is a linear least-squares assumption

for P and ∆P. Based on the experience with the first model pairing (with an equal number of high

and low-fidelity design variables), the number of sampled points is set to 12. The resulting

surrogate model from this space mapping is shown in Figure 24. The surrogate response is a linear

approximation of the high-fidelity behavior, and so it appears as a plane in 3D space. The

orientation of the plane should be parallel with the x̄H6
-x̄H7

plane due to the symmetry of the

high-fidelity response over the range of plotting variables, but is not due to slight biases in the

sampled design vectors involved in Task 1. When the space mapping algorithm is repeated for

different sampled points, the first-order surrogate response fluctuates about the point

[x̄H6 = π/2 radians , x̄H7 = 1.0]. What is clear from Figure 24 is that a linear form for P and ∆P is

insufficient to capture the nonlinear behavior absent in the low-fidelity model. For the 12 sampled

high-fidelity executions in this space mapping, there were 384 low-fidelity executions performed.
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Figure 24. Surrogate model constructed using 12 sampled high-fidelity data points
and a linear least-squares space mapping

For the nonlinear behavior present in the high-fidelity response to be imparted on the

low-fidelity response, a nonlinear relationship for P and ∆P is needed. Increasing the number of

sampled points to 24 and allowing for a second-order least-squares polynomial fitting yields the

space-mapped surrogate model shown in Figure 25.

Figure 25. Surrogate model constructed using 24 sampled high-fidelity data points
and a second-order least-squares space mapping

This second-order relationship exhibits the ability to capture the nonlinear behavior present in the

high-fidelity response rather well. This model pairing (over the range of variables for which the

space mapping was derived) is well represented by a second-order relationship between fidelity
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levels, so the performance of the second-order least-squares polynomial is not very surprising. For

the 24 sampled high-fidelity design points there were 762 low-fidelity analysis executions.

Subsequent increases in the order of the least-squares polynomial form provide marginally

better total error values, with the major gain in surrogate model performance occurring in the

transition from a linear variable relationship to a second-order one. A similar comparison to the

one shown in Figure 18 for different degrees of least-squares polynomial forms for this model

pairing is shown in Figure 26. Without any prior knowledge of the relationship between the two

fidelity levels, a user could compare the average error per sampled point to determine the

appropriate degree of polynomial (which will determine the number of points to sample in the

high-fidelity design space).

Figure 26. Average Errors per sampled point for a range of q’s showing a steep de-
crease from order 1 to 2, and marginal decreases for subsequent polynomial degrees

Figure 27 showcases the similarity between a second-order and third-order least-squares

space-mapped surrogate models. There are no significant visual differences between the two

models, which supports the conclusion drawn from the data in Figure 26 that polynomial degrees

greater than 2 are not worth the extra high-fidelity model executions. The surrogate models

constructed from fourth-order and higher least-squares polynomial forms were also visually

indistinguishable from the second-order least-squares space-mapped surrogate model shown in

Figure 25. The RMSE values for the two surrogate models are 872.8 for the second-order

polynomial and 1115.9 for the third-order polynomial, implying that the second-order polynomial

space mapping is the best polynomial representation of the high-fidelity response.

46



Figure 27. Surrogate models constructed using 36 sampled high-fidelity data points
and assuming a (a) second-order and a (b) third-order least-squares space mapping

The assumption of the nonlinear form shown in Task 3B for P and ∆P produces a surrogate

model that actually outperforms the least-squares space mapping process in Task 3A with respect

to replicating the nonlinear high-fidelity response for the least number of sampled points. For the

same sampled high-fidelity design vectors as the first-order least-squares polynomial in Figure 24,

the nonlinear form produces the surrogate model shown in Figure 28b. Using only the 12 sampled

points, a nonlinear form of P and ∆P were found to replicate the second-order behavior seen in

the high-fidelity response. This is a huge advantage over the second-order least-squares method,

but the advantage is specific to the model pairing in question. After all, the least-squares space

mapping process was found to be the better performing method in the first model pairing.
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Figure 28. Surrogate models constructed using 12 sampled high-fidelity data points
and assuming a (a) first-order least-squares and a (b) nonlinear polynomial space
mapping

The performance comparison (in terms of average error per sample point) for the least-squares

polynomial and the nonlinear polynomial forms in the space mapping process is shown in Figure

29. Note the low average error values for the second-order least-squares polynomial space mapping

for sample points of 16 and greater. This data indicates that the number of samples taken in

earlier space mappings (q = 24) may have been overly conservative for this model pairing.

Figure 29. Comparison of average error per sampled point for a range of q using
a first and second-order least-squares polynomial and a nonlinear polynomial space
mapping approach

The final space mapping form applied to the second model pairing is the nonlinear kriging

models for P and ∆P. The number of sampled points is set to 38, which is two more than the

minimum number of responses for a kriging model to be built for the given number of high-fidelity

design variables. As expected, the kriging implementation of space mapping is able to replicate the
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high-fidelity behavior in the surrogate response. Figure 30 compares the space-mapped surrogate

with a traditional kriging model constructed form the same 38 sampled data points. The

space-mapped surrogate displays a better qualitative fit, but both surrogate models are able to

recreate the trends seen in the high-fidelity design space. In quantitative terms, the RMSE for the

kriging implementation of space mapping was 1334.0 while the RMSE for the traditional kriging

model was 9434.9 (Figures 30a and 30b). For 38 sampled high-fidelity data points, the space

mapping algorithm executed the low-fidelity analysis 1,218 times.

Figure 30. Surrogate models constructed using 38 sampled high-fidelity data points
and assuming a (a) kriging implementation of space mapping and a (b) traditional
kriging model acting as a surrogate

Case 3 Space-Mapped Surrogate Models

The Case 3 model pairing involving the peaks() function and the truncated peaks() function

is certainly the most challenging of the three cases for the space mapping process. These functions

are highly nonlinear, and have been used extensively in the field of gradient-based optimization to

test the performance of optimization routines. The response surfaces shown in the following plots

are not easily represented by polynomial expressions, and as such many of the space mapping

forms detailed in this research struggle to replicate the high-fidelity response in the surrogate

models. A kriging implementation of the space mapping process is somewhat successful, but no
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more successful than the traditional kriging surface generated from the same sampled data points.

As such, the Case 3 model pairing is presented to highlight potential limitations of the space

mapping process to highly nonlinear applications.

The visual comparison between the peaks() function and the truncated peaks() function

shown in Figure 13 is plotted over a wide range of x and y values to showcase the many peaks and

valleys present in the design space. A subspace of the design space has been selected from which

the sample points are taken; this subspace is illustrated in Figure 31. This subspace is focused on

the area of the shared design space where the disagreement between the two fidelity levels is

greatest. For each of the following space-mapped surrogates, 15 points were sampled from the

high-fidelity subspace and the space mapping process required 405 low-fidelity analysis executions.

Due to the nonlinearity of the surface being sampled, it should be noted that the surrogate models

shown are a reflection of the specific points taken from the high-fidelity response. It is possible,

with the appropriate selection of sample point locations, to achieve surrogate models that perform

either very well or very poorly.

Figure 31. Illustration of the subspace, encompassing the peak in the high-fidelity
model that is absent in the low-fidelity model, from which data points are sampled
for the space mapping process

An application of the least-squares space mapping process of Task 3A yields a number of

possible surrogates based upon varying degrees of least-squares polynomials. For 15 sampled data

points, the maximum polynomial degree is set to 5 (a first-order least-squares fit requires 3 sample

points). The polynomial degree with the least total error is the highest polynomial form applied,
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and the resulting surrogate model is shown in Figure 32. While regions at the boundaries of the

subspace are altered by the space mapping process, the surrogate model is able to replicate aspects

of the peak from the high-fidelity response. The progression of surrogate models from a linear

least-squares to the fifth-order least-squares space mapping is interesting because the surrogate’s

ability to model the missing peak increases with each increase in polynomial degree. This trend

ends when a sixth-degree polynomial is fit to the space mapping data; For those interested, the

surrogate models based on the least-squares polynomials mentioned here are included in the

Appendix in Figures 50 - 54.

Figure 32. Surrogate model constructed using a fifth-order least-squares space map-
ping approach

The nonlinear polynomial form for the space mapping data prescribed in Task 3B is not so

capable as the least-squares polynomial for this model pairing. The resulting surrogate model

modifies the low-fidelity design space by forming a “plateau” in the region where the peak is

present in the high-fidelity design space. This surrogate model may be more representative of the

high-fidelity design space than the original low-fidelity model, but there is not a local maximum

present in the surrogate design space in the vicinity of the high-fidelity peak. An optimization

process applied to this surrogate model would therefore not yield the same local maxima and

minima as the high-fidelity model, which is a desirable property for a surrogate model. This

surrogate model is plotted alongside the high-fidelity design space in Figure 33. The RMSE for this

surrogate model is 1890.5, which is lower than the RMSE value of the least-squares polynomial.

The RMSE is 2223.6 for the fifth-degree polynomial space-mapped surrogate shown in Figure 33.
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Figure 33. Surrogate model constructed using a nonlinear polynomial space map-
ping approach

Executing Task 3C involves fitting a kriging model to each low-fidelity design variable as well

as the residual differences between fidelity levels. The resulting surrogate models constructed using

this type of space mapping tend to reflect the presence of the peak in the high-fidelity model, but

when compared to the traditional kriging response surface, constructed from the sampled

high-fidelity data points, the surrogate model response surfaces tend to be much more jagged. For

the 15 sampled data points shown in Figure 31, the surrogate model represents the high-fidelity

response reasonably well (shown in Figure 34). The traditional kriging surface illustrated in Figure

35 arguably performs better due to the lack of the artificial ridges on the peak’s surface. The

performance of the kriging space-mapped surrogate model as well as the traditional kriging surface

is heavily dependent upon the location of the sampled high-fidelity data points, and so a number of

alternate sample datasets were run through the space mapping algorithm. The comparisons

between these surrogate models and their traditional kriging surface counterparts are included in

the Appendix in Figures 55 - 57. In general, for the many different sets of sampled points explored

in this research for this model pairing, the traditional kriging surface was judged to be the better

surrogate for the high-fidelity model. The RMSE for the kriging implementation of space mapping

is 808.7 (response shown in Figure 34) while the RMSE for the traditional kriging model is 531.7

(Figure 35).
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Figure 34. Surrogate model constructed using a nonlinear kriging space mapping
approach

Figure 35. Surrogate model constructed using a traditional kriging response surface
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V. Space Mapping Application with ESAV Tools

The Aerospace Vehicles Directorate of the Air Force Research Laboratory (AFRL/RQ) is

interested in the optimal design of an Efficient Supersonic Air Vehicle (ESAV). In pursuit of this

goal, the Multidisciplinary Science and Technology Center (MSTC) within AFRL/RQ is investing

resources towards a design and optimization framework that will allow designers to capture the

effects of innovative design features (such as advanced engine technologies, active aero-elastic wing,

gust load alleviation, and tailless supersonic flight) early on in the design cycle [12]. The ability to

capture subsystem interactions at a high level of fidelity drives the resulting design framework

towards computationally expensive analysis methods.

As the computational cost of executing a single analysis increases, the associated cost of

optimization using this analysis increases as well. As the analyses within the design framework are

pushed to higher fidelity levels, the resulting time and resources required to execute a design

iteration makes an optimization scheme infeasible. Space mapping may allow optimization at these

higher fidelity levels using lower fidelity codes at the expense of the space mapping process

outlined in Chapter III. The design framework used in this research is the ESAV model built

within the Service-Oriented Computing Environment (SORCER) developed internally at

AFRL/RQ. This framework contains analysis blocks representing the relevant engineering

disciplines involved in the design of an efficient supersonic air vehicle.

The various analysis blocks are organized within the SORCER environment according to the

N2 diagram shown in Figure 36. The framework for the ESAV design begins with an analysis block

that takes in inputs related to the size and shape of the vehicle and outputs various geometry files

needed in later blocks. This analysis is performed by a tool called MSTCGeom which was

developed in-house at RQ for ESAV design purposes. The MSTCGeom tool forms a finite-element

model (FEM) for a conceptual vehicle, which is necessary for the various analysis blocks further

down the N2 flow. The automation of the FEM synthesis in the MSTCGeom tool greatly increases

the utility of the ESAV analysis as a whole because manual FEM construction is a tedious and

time-consuming task that can limit the number of design concepts analyzed in a given phase of

development. The automation of the FEM construction allows a greater number of design

configurations to be analyzed given time constraints on the phase of the design cycle [13].
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Figure 36. N2 diagram depicting the various analysis blocks in the ESAV model
within SORCER, taken from Ref [14]

ESAV Space Mapping Implementation

A small subset of the tools available within the ESAV design framework are analyzed in this

research. The space mapping process outlined in Chapter III is applied to construct and evaluate a

surrogate model for the ASTROS structural sizing tool. ASTROS is a tool developed for AFRL

that is capable of analyzing and optimizing aerodynamic structures considering the various static

and dynamic loads involved in the flight profile. ASTROS takes a set flight profile as well as a

FEM model of the aerospace structure and outputs (among numerous other things) the weight of

the structure optimized for minimum mass, while withstanding the applied loads [15]. The FEM is

constructed by the MSTCGeom tool, which requires the input variables listed in Table 6. The

inputs to the MSTCGeom tool are the high-fidelity design variables for the ESAV space mapping

application, and the ASTROS weight value is the high-fidelity response that is approximated.

55



Table 6. High and low-fidelity design vector for the ESAV space mapping application

high-fidelity design vector, x̄H
variable definition units

area planform area of the wing in2

aspect ratio span2/area -

t/c @ root thickness to chord length ratio at wing root -

t/c @ tip thickness to chord length ratio at wing tip -

wing sweep sweep of the wing (at the quarter chord position) degrees

taper ratio ratio of the wing’s tip length to root length -

camber location location of the camber for the airfoil cross-section %

max camber location location of the maximum camber for the airfoil cross-section %

wing twist angle of twist at the wing tip of the airfoil cross-section degrees

low-fidelity design vector, x̄L
area trapezoidal wing area ft2

aspect ratio span2/area -

t/c @ root thickness to chord length ratio at wing root -

wing sweep sweep of the wing (at the quarter chord position) degrees

taper ratio ratio of the wing’s tip length to root length -

The low-fidelity analysis for this ESAV space mapping is a weight prediction model based

upon empirical data coupled with sizing approximations for the various subcomponents of an

aircraft. This model is presented in [16] on pages 583-595. The number of variables input into this

weight predictor is immense, but most of these inputs are held constant for the purposes of this

space mapping. A full listing of these input parameters (and their values) is listed in the Appendix

in Table 17.

The ESAV design framework used in this space mapping application is set to replicate the

weight and planform characteristics of an F-16 aircraft (used within RQ for code validation

purposes). All input parameters to the ESAV model not pertaining to the wing of the vehicle have

been set to the values for an F-16. The same is true of the weight predictor, where the various

inputs listed in Table 17 are set to values representative of an F-16. The design variables for both

the high and low-fidelity models describe the wing structure for the vehicle. Table 6 lists the

variables in both the high and low-fidelity design vectors, along with their definitions. One of the

assumptions in this space mapping algorithm is the two models, while at differing levels of fidelity,

share some commonality in the contours of the shared design space. For the ESAV space mapping

application, there are five shared design variables and four additional high-fidelity design variables,
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as shown in Table 7. Any improvements in predictive accuracy of the space-mapped surrogate

models hinges upon the validity of this assumption.

Table 7. Shared-fidelity design vector for the ESAV space mapping application

shared-fidelity design vector, x̃L

variable definition units

area trapezoidal wing area ft2

aspect ratio span2/area -

t/c @ root average thickness to chord ratio for the main wing -

wing sweep sweep of the wing (at the quarter chord position) degrees

taper ratio ratio of the wing’s tip length to root length -

additional high-fidelity design variables, x̃H

t/c @ tip thickness to chord length ratio at wing tip -

camber location location of the camber for the airfoil cross-section %

max camber location location of the maximum camber for the airfoil cross-section %

wing twist angle of twist at the wing tip of the airfoil cross-section degrees

In the application of the space mapping process, some of the shared design variables need to

converted from the format expected of the high-fidelity model to the format required in the

low-fidelity model. The area variable needs minor alterations when passing from the ASTROS

model to the weight predictor, and vice versa. For instance, the weight predictor considers the

planform area of the wing to include the sections enclosed in the fuselage of the vehicle. ASTROS,

on the other hand, only considers the wetted-area of the wing and disregards the wing structure

within the bounds of the fuselage section. Additionally, the ESAV model inputs are for the

vehicle’s half-span while the weight predictor inputs are the vehicle’s full wing-span. Lastly, the

area variable is converted as appropriate between square inches and square feet. All of these

conversions are needed in order to translate a high-fidelity design vector, x̄H , into space-mapped

low-fidelity design variables.

For the implementation of the space mapping algorithm, a number of datasets were extracted

from the ESAV design framework using the latin hypercube sampling process. Since there are nine

high-fidelity design variables, the size of the sample datasets were set to multiples of 14 (this was

judged to be a conservative number of points necessary for implementing a linear least-squares

space mapping). Three datasets were formed with 14 samples, three datasets were formed with 28
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samples, and an additional dataset was formed with 50 samples. Each dataset was sampled from

within the bounds set below in Table 8.

Table 8. Upper and lower boundaries for the sampled datasets used in the ESAV
space mapping application

bounds

variable upper lower units

area 30,000 25,000 in2

208.33 173.61 ft2

aspect ratio 4.0 2.0 -

t/c @ root 10 6 %

wing sweep 45 25 deg

taper ratio 0.5 0.2 -

t/c @ tip 8 4 %

camber location 10 0 %

max camber location 10 0 %

wing twist 5 -10 deg

Even after the development and debugging cases shown in Chapter IV, an additional

modification to the algorithm was needed for the space mapping application to the ESAV tools to

be successful. The responses for the two models using the same shared design variables differ by a

magnitude of approximately 3,500 pounds within this region of the design space, and this

difference in the magnitude of the responses is not correlated with any of the design variables. The

reason a large difference exists between the two models is not relevant with regards to this space

mapping technique (these reasons are known to the researchers in AFRL/RQ), but the space

mapping algorithm needs to handle such offsets should they exist. Without modifying the

algorithm, the only method for the space mapping process to handle such an uncorrelated offset is

to increase the magnitude of the last coefficient in the space mapping form (for both the Task 3A

and 3B forms). This last coefficient, or the “offset” coefficient, is the C0 term in Equation 6. Table

9 shows the actual space mapping coefficients for a first-order least-squares fitting using the space

mapping algorithm described in Chapter III. Notice the relative size of the offset coefficients

compared to the other coefficient values.

The large offset coefficients are a result of how the minimization process in Task 2 handles the

offset between the fidelity levels. To minimize the errors between the two models, all of the

low-fidelity inputs needed significant scaling to make up for the inherent magnitude difference

between the fidelity levels. Through the least-squares fitting of this data to the first-order form
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Table 9. Space mapping coefficient values for the ESAV application without the
modification to the algorithm

scaled high-fidelity design variables

x̄H1
x̄H2

x̄H3
x̄H4

x̄H5
x̄H6

x̄H7
x̄H8

x̄H9
offset

scaled
low-fidelity
design
variables

x̄L1
0.92 0.05 0.10 -0.22 0.02 -0.02 0.01 0.02 0.03 1.23

x̄L2
-0.53 -0.42 0.84 -1.21 0.15 0.11 -0.02 0.18 0.15 5.98

x̄L3
-0.01 -0.18 1.17 0.46 0.00 0.02 -0.01 -0.06 0.05 -2.17

x̄L4
0.15 0.29 0.20 1.15 -0.03 -0.08 0.05 -0.09 -0.01 2.59

x̄L5
-0.02 -0.03 0.04 -0.06 0.99 -0.00 0.00 0.01 0.01 0.27

shown in Table 9, the space mapping algorithm accomplished this scaling primarily through the

offset coefficients. While this scaling was necessary to match the model responses, the design

contours of the low-fidelity model were skewed as a result. This led to surrogate models that, while

able to approximate the high-fidelity response, consistently under-performed in terms of accuracy

with respect to more traditional PRM surrogates. In short, any potential gains in prediction

accuracy due to similarities in the contours of the shared design space were lost by the space

mapping algorithm accounting for the response difference through the scaling of design variables.

The modification made to the space mapping algorithm to alleviate this problem is simple,

and yet it carries both an additional assumption and a procedural penalty with it. Before the

minimization sequences in Task 2, the average difference between the high and low-fidelity

responses using the same shared design variables is calculated. This average error is then added to

the low-fidelity response when computing the objective function in Equation 35, which results in

the following equation to replace the objective function in the Task 2 minimization sequences:

min
x̄L

J = [RH(x̄H)−RL(x̄L) +Ravg diff ]
2
. (50)

Adding the average difference between the fidelity levels to the objective function assumes that

this difference value is not attributable to any of the high-fidelity design variables. This

assumption is deemed to be valid in this case due to the presence of large offset coefficient values in

the space mapping matrix. Table 10 shows the space mapping coefficient values for the same data

points used in constructing Table 9 after this modification to the algorithm was implemented.

The procedural penalty associated with modifying the objective function, as shown in

Equation 50, is the new requirement that the steps in Task 2 can only begin once all of the
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Table 10. Space mapping coefficient values for the ESAV application with the
modification to the algorithm

scaled high-fidelity design variables

x̄H1
x̄H2

x̄H3
x̄H4

x̄H5
x̄H6

x̄H7
x̄H8

x̄H9
offset

scaled
low-fidelity
design
variables

x̄L1
0.96 -0.08 0.02 -0.09 0.03 0.02 0.00 0.07 -0.01 -0.00

x̄L2
-0.18 0.60 0.15 -0.46 0.10 0.13 0.01 0.28 -0.10 0.05

x̄L3
0.06 0.13 0.96 0.17 -0.04 -0.05 -0.01 -0.11 0.03 0.01

x̄L4
-0.07 -0.17 0.05 0.80 0.07 0.03 0.01 0.15 -0.02 -0.03

x̄L5
-0.01 -0.02 0.00 -0.02 1.01 0.00 -0.00 0.02 -0.00 0.00

high-fidelity responses have been gathered in Task 1. In the original space mapping algorithm, it

was possible to execute the minimization sequence associated with each high-fidelity response as

soon as the high-fidelity computation was complete. Now, with the need to calculate the average

difference between the fidelity levels, the minimization sequences cannot begin until the last

high-fidelity response is delivered. The inclusion of this average difference between fidelity levels

alters the implementation of the surrogate model, as shown in Figure 37.

Figure 37. Final representation of the surrogate model constructed through the
implementation of the space mapping algorithm

Due to the expense of running the high-fidelity analysis and the increased number of

additional design variables, a qualitative analysis using surface responses (as shown in Chapter IV)

is infeasible in this case. Instead, a stochastic analysis of the performance of the resulting

surrogate models is performed. Each space mapping requires a certain number of sampled data

points to construct a surrogate; the remaining number of sampled points can be used to determine

the performance of the space-mapped surrogate in predicting the high-fidelity response. The

number of remaining sample points in all cases is large enough to be considered statistically
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relevant (greater than 40 members in the sample population). This large pool of data is used to

conduct a stochastic analysis to characterize the accuracy of the surrogate models within the

bounds specified in Table 8.

Consider the case where the first dataset (containing 14 data points) is used to derive a

first-order least-squares surrogate model using the algorithm laid in Task 3A. The remaining data

points are then used for comparison purposes to gather the percent errors between the high-fidelity

response and the surrogate response. This data is analyzed through the use of histograms (to

illustrate the number of occurrences within a set range of errors) as well as representative normal

distribution curves generated using the mean and standard deviation of the percent errors

collected. For comparison purposes, a traditional polynomial response surrogate is also generated

using the same dataset as the space mapping implementation. This polynomial response surrogate

was constructed using the same least-squares technique (detailed in Chapter II) that is used to fit

data in the space mapping algorithm. The results for the traditional polynomial response

surrogate are plotted alongside the results for the space-mapped surrogate, where applicable.

ESAV Space Mapping Results

The surrogate construction methods detailed in this thesis proved capable of producing

surrogate models to approximate the high-fidelity response for each of the space mapping forms. In

the sections that follow, the surrogates that resulted from each space mapping form are discussed

and compared to the appropriate least-squares PRM surrogate models. The results from these

comparisons with PRM surrogate models suggest that modest increases in estimation accuracy are

possible through implementation of the space mapping algorithm detailed in this document. While

the results presented in the following sections are not an exhaustive investigation of this alternative

method for surrogate construction, they should be considered as a proof-of-concept for a method

that might be beneficial within a subset of multifidelity design frameworks.

First-Order Datasets

Three of the seven datasets sampled in this research contain 14 data points and were

dedicated to the construction of first-order surrogate models (with the exception that the nonlinear

space mapping form discussed in Task 3B can be second-order). The number of sample points in

each first-order dataset precludes the option of a kriging implementation. The results from the
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least-squares space-mapped surrogate model using the first dataset show that this surrogate model

is capable of approximating the high-fidelity response to a good degree. When the remaining

sample points are fed into this surrogate model for comparison to the high-fidelity data, the

surrogate model is able to predict the high-fidelity response to within a couple of percentage points

of the total value. Figure 38 shows a histogram of the percent errors as well as a representative

normal distribution plotted using the mean percent error and the standard deviation from the

remaining high-fidelity data points.

Figure 38. Histogram and representative normal distribution curve for the percent
errors found using the least-squares space-mapped surrogate model in comparison
to the high-fidelity response

The nonlinear space mapping form detailed in Task 3B produced a surrogate model with even

greater accuracy in the prediction of results. The histogram and representative normal distribution

curve are shown in Figure 39. The greater prediction accuracy is likely a result of the nonlinear

nature of this space mapping form conforming more easily to the data obtained from the

minimization sequences of Task 2 in the algorithm. Even though the number of sample points in

this dataset are only sufficient for a linear least-squares fitting, the nonlinear form (found through

the use of a genetic algorithm) is able to fit each design variable with either a linear or a

second-order polynomial. While the resulting surrogate is more accurate than the linear
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least-squares surrogate shown in Figure 38, the process of determining the space mapping

coefficients takes significantly longer. This length of time depends upon the size of the initial

population, the number of generations, and many other configurable options available in the

genetic algorithm.

Figure 39. Histogram and representative normal distribution curve for the percent
errors found using the nonlinear space-mapped surrogate model in comparison to
the high-fidelity response

Using the same sample datapoints in the dataset, a first-order least-squares PRM surrogate

was constructed and the remaining high-fidelity design vectors were fed into this surrogate model

for a similar error analysis. Both the least-squares and nonlinear space-mapped surrogate models

display reduced spread in the range of the percent errors with respect to the PRM surrogate, and

the representative normal distribution curves show a similar advantage for the space-mapped

surrogates in terms of prediction accuracy as well. These comparisons are shown in Figure 40.
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Figure 40. Histogram and representative normal distribution curve for the percent
errors found using the polynomial response surrogate (LS PRM) overlaid on the
data from the space-mapped (SM) surrogate

A scatterplot of the actual responses for both the high-fidelity model and the surrogate

models is shown in Figure 41. The dotted black line in each of the plots signifies a perfect

relationship between the high-fidelity responses and the surrogate response. Data points off of this

line therefore have error associated with the surrogate’s prediction. While a scatterplot provides a

good visualization of the data, a quantitative determination of which surrogate is more accurate

can be obtained through a RMSE calculation for each of the data points shown. The RMSE

comparisons for each of the first-order datasets can be found in Table 11.
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Figure 41. Scatterplot for both the least-squares and nonlinear space-mapped sur-
rogate responses, with the least-squares PRM surrogate response plotted for com-
parison

Applying the same process that resulted in the data shown in Figure 40 for the remaining two

datasets shows a more equal footing between the space-mapped surrogate models and the

least-squares PRM surrogate constructed from the same dataset. Considering the information

shown in Figures 40, 42, and 43, the space-mapped surrogate models are at least as capable as

their PRM surrogate counterparts in estimating the high-fidelity response.
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Figure 42. Percent error comparison between the least-squares space-mapping and
the PRM surrogate models derived from samples in the second dataset

Figure 43. Percent error comparison between the least-squares space-mapping and
the PRM surrogate models derived from samples in the third dataset
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The following table contains a summary of the comparison results for the first-order datasets.

The RMSE shown in Table 11 was calculated using the percent errors (as opposed to the actual

error numbers). The RMSE is included as an additional comparison parameter and in all three

cases the lowest RMSE corresponds to the surrogate model with the least standard deviation.

Scatterplots for the second and third first-order dataset have been included in the Appendix in

Figures 58 and 59.

Table 11. Surrogate performance summary comparing the various surrogates con-
structed from the sampled datasets containing 14 data points

surrogate average standard max min
RMSE*

type % error deviation % error % error

dataset 1

1st-order LS** SM† 0.0286 0.6129 1.9020 -1.4972 0.6117

1st-order LS PRM‡ -0.0261 0.8615 1.9652 -2.7509 0.8593

nonlinear polynomial SM 0.0294 0.3698 0.9413 -1.1912 0.3698

dataset 2

1st-order LS SM -0.0122 0.5797 1.9157 -1.6243 0.5780

1st-order LS PRM -0.0160 0.5706 1.5699 -2.0582 0.5691

nonlinear polynomial SM 0.0134 0.5299 1.7668 -1.2683 0.5285

dataset 3

1st-order LS SM -0.0751 0.8116 2.6026 -1.8438 0.8125

1st-order LS PRM 0.1170 0.6878 1.5849 -2.1322 0.6956

nonlinear polynomial SM -0.1621 0.4503 1.3652 -1.6147 0.4773

*root mean square error using the % error, **least-squares
†space mapping, ‡polynomial response methodology

Second-Order Datasets

In order to fit a second-order least-squares form to the space mapping data, three datasets

were sampled with 28 sample points in each. Surrogate models were constructed using these

sample points in the same manner as before which enabled the comparison of the space-mapped

surrogate models with the least-squares PRM surrogates. The surrogates (both the space-mapped

surrogates and the PRM surrogates) based on the second-order polynomial forms do not

necessarily improve the predictive accuracy of the model in comparison to the surrogates based on

first-order polynomials. This finding implies that the high-fidelity response, within the bounds of

the design space set in Table 8, is predominantly linear with respect to the design variables. For
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each of the three second-order datasets, the space-mapped surrogate models perform at least as

well as the least-squares PRM surrogates constructed from the same data points.

The surrogates built from the data points in the first dataset were found to predict the

high-fidelity response to within a small range of percent errors. A comparison between the

surrogate models based upon a least-squares fitting of data is shown in Figure 44. Judging from

the information available in the graphic, there does not appear to be a clearly-superior surrogate

model with respect to predictive accuracy. A similar comparison between the second-order

least-squares PRM surrogate and the nonlinear space-mapped surrogate is shown in Figure 45.

The nonlinear space mapping form yielded a surrogate with similar predictive accuracy as the

second-order least-squares PRM surrogate. Additional scatterplots comparing each of the

surrogate methods for each of the three datasets are included in the Appendix in Figures 64-69.

Figure 44. Histograms and representative normal distribution curves for the first
and second-order least-squares surrogate models based on the first of three second-
order datasets
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Figure 45. Histogram and representative normal distribution curve for the nonlinear
surrogate model based on the first of three second-order datasets (second-order LS
PRM surrogate data plotted for comparison)

Illustrations similar to Figures 44 and 45 were produced for the second and third dataset and

can be found in the Appendix in Figures 60-63. While there are differences between the predictive

capacity of each surrogate model type across the three datasets, in general the space-mapped

surrogate models proved capable of approximating the high-fidelity response equally as well as the

least-squares PRM surrogate models. In many of the cases, the space-mapped surrogates yielded

modest gains in predictive accuracy over their least-squares counterparts. Table 12 contains the

important data obtained from the stochastic analysis of each of the surrogate models discussed.

Included for each surrogate model is the RMSE value, which is yet another means of comparison

between the many surrogate models. In all three of the second-order datasets, a space-mapped

surrogate yielded the smallest RMSE.
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Table 12. Surrogate performance summary comparing the various surrogates con-
structed from the sampled datasets containing 28 data points

surrogate average standard max min
RMSE*

type % error deviation % error % error

dataset 1

1st-order LS** SM† -0.0352 0.4896 1.2166 -1.4397 0.4892

1st-order LS PRM‡ 0.0299 0.5150 1.4534 -1.3507 0.5141

2nd-order LS SM -0.0396 0.4584 0.8378 -1.6909 0.4585

2nd-order LS PRM 0.0369 0.5573 2.0011 -1.3740 0.5567

nonlinear polynomial SM -0.0143 0.5990 1.4974 -2.1739 0.5972

dataset 2

1st-order LS SM 0.0371 0.3835 1.1081 -1.0523 0.3840

1st-order LS PRM -0.0493 0.4174 1.1670 -1.1908 0.4189

2nd-order LS SM 0.0477 0.5339 1.5520 -1.7420 0.5343

2nd-order LS PRM -0.0562 0.5212 1.6288 -1.5705 0.5225

nonlinear polynomial SM 0.1039 0.4837 1.5385 -1.1228 0.4931

dataset 3

1st-order LS SM 0.1337 0.4762 1.8175 -0.8584 0.4931

1st-order LS PRM -0.1438 0.5486 0.9258 -2.0655 0.5653

2nd-order LS SM 0.1294 0.5350 1.4200 -1.0987 0.5486

2nd-order LS PRM -0.1446 0.6487 1.4751 -1.6820 0.6625

nonlinear polynomial SM 0.0973 0.5544 1.8773 -1.0603 0.5610

*root mean square error using the % error, **least-squares

†space mapping, ‡polynomial response methodology

Nonlinear Kriging Space-Mapped Surrogates

The construction of surrogate models based on Kriging interpolation schemes requires a

dataset of at least 58 sample points. Since none of the datasets referenced up to this point have

the requisite number of points, multiple datasets were merged so that two instances of

kriging-based surrogate comparisons could be made. The first kriging dataset is formed from the

dataset containing 50 sample points added to the first dataset of 14 sample points, bringing the

number of sample points to 64. The second kriging dataset was constructed from the first and
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second datasets containing 28 samples as well as the second dataset containing 14 samples points

(for a total of 70 sample points).

The performance of the kriging-based space-mapped surrogate models was found to be similar

to the performance of the traditional kriging surrogate models constructed from the same sampled

points. A comparison between the two surrogate models using the bare minimum of 58 data points

was conducted and the results are shown in Figure 46. This comparison put to the test the

hypothesis that the similarity between the contours of the shared design space might significantly

improve the predictive capability of the space-mapped surrogate model for a sparse number of

points. The results do not confirm this theory, as shown in the similarity between the two

histograms and representative normal distributions.

Figure 46. Histograms and representative normal distribution curves for the kriging-
based SM surrogate and the traditional kriging surrogate based on the same 58
sample data points from the first kriging dataset

Plotting the RMSE against the number of sample points dedicated to the surrogate

construction shows the the predictive capabilities for each surrogate. While the kriging
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space-mapped surrogate displays slightly smaller RMSE values in comparison to the traditional

kriging implementation, the difference between the surrogate models is deemed to be negligible.

The kriging space-mapped surrogate model, for this model pairing, did not produce the significant

accuracy gains to justify the added complexity of the space mapping algorithm versus a traditional

kriging method.

Figure 47. RMSE plotted against the number of samples on which each kriging
surrogate was based
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VI. Conclusions

The intent of this research was to explore the possibility of realizing gains in predictive

accuracy of a surrogate model over existing surrogate methods through the alignment of a

low-fidelity design space with that of the high-fidelity design space using space mapping

techniques. Accuracy in a surrogate model is important because the ability to accurately

approximate the high-fidelity design space contours means a design team could access high-fidelity

information about the system at the computational expense of the low-fidelity models. This

modeling capability would serve to mitigate the risk identified by AFRL/RQ that the lower fidelity

design tools might exclude novel design configurations able to leverage new technologies or relevant

physical phenomena.

The methods employed in the space mapping algorithm yielded surrogate models that, in the

majority of the cases explored in Chapter V, met or exceeded the predictive capability of the

traditional methods of surrogate construction. In the cases where a space-mapped surrogate model

was the more accurate surrogate in the prediction of the high-fidelity response, the gains in

accuracy may not be large enough to warrant the added complexity associated with the space

mapping algorithm. The process presented in this work is a first attempt to build a surrogate

model using the modified space mapping procedure outlined in Chapter III, and it is possible that

future revisions and modifications might take better advantage of the information available at the

lower fidelity levels to improve the accuracy of the surrogate models.

There are both advantages and disadvantages to the employment of space mapping in the

construction of surrogate models. Although the results shown in this document are only a proof of

concept and the method has yet to be tested in a large number of applications to discover how

robust the technique truly is, the technique did show modest gains in predictive accuracy for the

ESAV application. It is therefore possible that the employment of the space mapping technique

can result in a more accurate surrogate model. Any gains in predictive accuracy will come at a

price, however. Any surrogate construction technique will require a certain number of points to be

sampled from the high-fidelity model; this space mapping algorithm also calls for multiple

optimization processes which require the execution of the low-fidelity model as well. Additionally,

each prediction on the part of the space-mapped surrogate will require the execution the

low-fidelity model. Depending upon the application, the costs of executing the low-fidelity tool so

often may outweigh any increase in the predictive capability of the surrogate model. The
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traditional PRM surrogate techniques, on the other hand, only require the high-fidelity data

points. Execution of the surrogate model in this case is simply the evaluation of the polynomial.

The development of this alternative method for approximation proceeded in the hopes of

finding a viable method of using the information available at the lower fidelity levels to reduce the

amount of information needed from the higher fidelity levels in the formation of a surrogate model.

For the process to be useful, the resulting surrogate models need to be more accurate than

conventional options built upon the same underlying data. This would bolster the argument that a

space-mapped surrogate can achieve similar accuracy levels with less sample points. Results from

this research do not show this method to be a significant improvement over current techniques

used in the design community, but these initial findings justify further research into the

incorporation of space mapping techniques in the field of surrogate construction.

Future Work

The following sections outline several avenues for future research that might better

characterize the benefits space mapping techniques can bring to the field of surrogate construction.

In addition to these research opportunities, a list of changes to the algorithm are presented that

were conceived in the course of the research, but not explored. In general, this research would

benefit greatly from a much wider application of the space mapping algorithm to many different

model-pairings. This would allow for a better characterization of any gains in predictive accuracy

resulting from the space mapping techniques.

Space Mapping as a Means to Reduce the Sampling of the High-fidelity Model

Suppose the premise of this research is true, and surrogate models constructed through space

mapping techniques do provide more accurate approximations of the high-fidelity response than do

contemporary surrogates. It would therefore be possible to achieve the same levels of predictive

accuracy shown in contemporary surrogates by using a surrogate based on less high-fidelity sample

points coupled with a low-fidelity analysis through space mapping techniques. This process would

lessen the number of samples required from the high-fidelity model, which would lessen the

computational burden associated with the construction of the surrogate. A future task to test this

hypothesis would need to implement a space mapping algorithm to a wider set of model-pairings

spanning many different engineering disciplines. Many different datasets would need to be gathered
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and a range of surrogate models (space-mapped and traditional) would then be constructed,

evaluated against other high-fidelity data points, and compared over various values of q.

Characterizing the Relationship between Fidelity Levels

One characteristic of the space mapping process not actively researched in this work was an

analysis of the information contained in the resulting space mapping forms. Information about the

relationship between the high and low-fidelity models is present in the space mapping relationships

and could be explored further. For instance, with regards to the ESAV application in Chapter V,

the first-order least-squares space mapping matrix in Table 10 shows how strongly the impact of

the shared design variables on the low-fidelity response correlate with the impact of the

high-fidelity design variables on the high-fidelity response. If the two computational models share

similar design space contours, then the shared design variables present in the low-fidelity model

should correlate most strongly with their counterparts in the high-fidelity model. This is seen in

Figure 48 for the majority of the shared design variables, with the exception of the aspect ratio

(AR) of the wing.

Figure 48. Bar chart illustrating the coefficient values of the space mapping form
shown in Table 10
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The data in Figure 48 suggests that the trends seen in the low-fidelity model will match the

trends seen at the higher fidelity level, except in the case of the aspect ratio variable. The presence

of relatively large coefficient values for design variables other than the high-fidelity aspect ratio

variable in the space mapping of the low-fidelity aspect ratio variable indicate that changes in the

aspect ratio value do not affect the responses of each model in the same way. Put another way, the

influence of the additional design variables is most easily seen in the space mapping of the

low-fidelity aspect ratio.

Potential Improvements to the Algorithm

In the course of this work, several minor alterations to the implementation of the space

mapping algorithm were considered but not explored due to time constraints. The first proposed

change is to the method of gathering the residual differences, ∆R. In the algorithm’s current state,

this quantity is calculated once the optimizer has changed the low-fidelity design variables in its

attempts to match the high and low-fidelity responses. This process does not likely fulfill the intent

of capturing the localized differences between fidelity levels, since the variable values in x̄∗L could

be significantly different than the shared design variable values, x̃L. To better capture the localized

difference, the algorithm should capture the residual as

∆R = RH(x̄H)−RL(x̃L)−Ravg diff (51)

so that the difference between fidelity levels is logged at the appropriate position in the shared

design space, x̃L. The optimal low-fidelity design vector, x̄∗L, output in this case should be x̃L so

that the space mapping data for this specific high-fidelity design vector reflects the presence of a

localized offset at the appropriate position in the shared design space.

The optimization process within Task 2, as executed in this research, was implemented

without considering the costs associated with iteratively executing the low-fidelity analysis. While

the low-fidelity model is assumed to be less expensive to execute than the high-fidelity model, this

does not mean that the cost of using the low-fidelity model in an optimization scheme is going to

be negligible. A refinement to the algorithm presented here would be to formulate the optimization

process to reduce the number of low-fidelity analysis calls required to obtain the space mapping

data.
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The inclusion of the average offset between fidelity levels, Ravg diff, may alleviate the need for

the offset coefficient in the space mapping form. The purpose of Ravg diff is to remove the

difference between the fidelity levels that is not attributable to the high-fidelity design variables;

once removed, it may make some sense to attribute all other differences between the two models to

the design variables. Removing the offset coefficient from the space mapping form would force the

algorithm to attribute any remaining difference between the two fidelity levels to the design

variables of the high-fidelity model.
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Appendix

Nomenclature

Traditional Space Mapping

symbol definition

x design variable

R response of function or model, a function of design variable(s)

x̄L low-fidelity design vector

n number of low-fidelity design variables

x̄H high-fidelity design vector

p number of high-fidelity design variables

P space mapping relationship

RL low-fidelity response, function of x̄L

RH high-fidelity response, function of x̄H

Least-Squares Projections and Polynomial Response Methodology

symbol definition

A matrix consisting of high-fidelity design variables raised

to the appropriate powers (see Equation 9)

PA projection matrix formed using A through Equation 3

k degree of polynomial

eact actual error for a polynomial approximation, see Equation 11

eest estimated error for a polynomial approximation at a given

location, see Equation 12

σ standard deviation for the estimation error at a given location
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Kriging

symbol definition

z∗(x̄) estimate at a location x̄ in an interpolation scheme

q number of sample data points

λ weighting coefficient used in an interpolation scheme

z(x̄) value of sample data point at the sample data location

m(x̄) trend component of the sample data points

K covariance matrix used in the kriging process, see Equation 16

r(x̄) residual component of the sample data points

CR(h̄) covariance between two sample points as a function of lag (h)

m constant mean of the sample data points, used in simple kriging

k̄ vector of covariance values between the sample data points

and the estimation point

Modified Space Mapping

symbol definition

x̃L design variables shared between fidelity levels

x̃H additional design variables in the high-fidelity model

∆R residual difference between fidelity levels at the end

of the optimization sequence in Equation 35

x̄∗L low-fidelity design vector that results from the

optimization sequence in Equation 35

∆P approximation for the residual differences

µx mean value of a sample population

σx standard deviation of a sample population

Et total error calculation used in the evaluation of different space mapping forms

φ̄ vector of coefficients used in the nonlinear space mapping of Task 3B

β̄ vector of powers used in the nonlinear space mapping of Task 3B

γ scalar value used in the nonlinear space mapping of Task 3B
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Variables in Model-Pairings

symbol definition

ρ density, units are slugs / ft3

V velocity, units are ft / sec

S planform area, units are ft2

CLα lift-curve slope, units are 1 / deg

α angle of attack, units are in degrees

eff efficiency factor, unitless

AR aspect ratio, unitless
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Table 13. Variable values held constant in the production of Figure 12

density velocity planform
area

lift-curve
slope

efficiency
factor

aspect
ratio

0.002377 100 10 0.11 0.85 3.0

slug/ ft3 ft/s ft2 deg−1 - -

Table 14. Case 1 shared variable values for surrogate model comparisons

density velocity planform lift-curve angle of

area slope attack

0.0023385 100 10 0.11 8

slugs/ft3 ft/sec ft2 1/deg deg

Table 15. Case 1 variable boundaries

variable density velocity planform lift-curve angle of efficiency aspect

area slope attack factor ratio

upper 0.002377 105 12 0.12 10 0.95 3.5

lower 0.002300 95 8 0.1 6 0.75 2

units slugs/ft3 ft/sec ft2 n/a deg n/a n/a

Table 16. Case 1 variable boundaries

variable density velocity planform lift-curve angle of x̄H6 x̄H6

area slope attack

upper 0.002377 105 12 0.12 10 2.356194 1.5

lower 0.002300 95 8 0.1 6 0.785398 0.5

units slugs/ft3 ft/sec ft2 n/a deg radians n/a
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Additional Data Plots and Illustrations

Figure 49. Tenth-order polynomial space mapped surrogate for the Case 1 model
pairing

Figure 50. Surrogate constructed using a linear least-squares space mapping for the
3rd model pairing
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Figure 51. Surrogate constructed using a second-order least-squares space mapping
for the 3rd model pairing

Figure 52. Surrogate constructed using a third-order least-squares space mapping
for the 3rd model pairing
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Figure 53. Surrogate model constructed using a fourth-order least-squares space
mapping approach

Figure 54. Surrogate model constructed using a sixth-order least-squares space
mapping approach
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Figure 55. Comparison between a kriging-based space-mapped surrogate and the
corresponding traditional kriging surface built from the sampling locations shown.
RMSE values: (b) 2818.6 (c) 9679.2

Figure 56. Comparison between a kriging-based space-mapped surrogate and the
corresponding traditional kriging surface built from the sampling locations shown.
RMSE values: (b) 645.1 (c) 910.6

Figure 57. Comparison between a kriging-based space-mapped surrogate and the
corresponding traditional kriging surface built from the sampling locations shown.
RMSE values: (b) 459.0 (c) 2379.6
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Table 17. Inputs held constant in the weight predictor for the ESAV space mapping

input value units
aspect ratio of vertical tail 0.9 -
number of vertical tails 1 -
horizontal tail span 18 ft
fuselage structural depth 6.5 ft
engine diameter 3.875 ft
fuselage width at horizontal tail intersection 7.5 ft
duct constant 3.43 -
fuselage structural length 49.5 ft
electrical routing distance (generators to avionics to cockpit) 40 ft
duct length 15 ft
length from engine front to cockpit 15 ft
single duct length 0 ft
length of engine shroud 16.5 ft
tail length 16.67 ft
length of tail pipe 1 ft
Mach number 2 -
crew number 1 -
number of crew equivalents 1 -
number of engines 1 -
number of generators 1 -
ultimate landing load factor 9 -
number of nose wheels 1 -
number of people on board 1 -
number of flight control systems 3 -
number of fuel tanks 7 -
number of hydraulic utility functions 10 -
ultimate load factor 11 -
system electrical rating 160 kV A
total area of control surfaces 200 ft2

control surface area (wing-mounted) 75 ft2

firewall surface area 2 ft2

horizontal tail area 98 ft2

rudder area 21 ft2

vertical tail area 86 ft2

specific fuel consumption 1.5 1/hr
total engine thrust 23,830 lbs
single engine thrust 23,830 lbs
integral tanks volume 900 gal
self-sealing (protected) tanks volume 17 gal
total fuel volume 1,076 gal
total fuselage structural width 7.5 ft
flight design gross weight 22,500 lbs
engine weight 3,067 lbs
landing design gross weight 19,500 lbs
uninstalled avionics weight 1,000 lbs
vertical tail sweep at 1/4 chord 45 deg
taper ratio for vertical tail 0.012 -
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Figure 58. Scatterplot for both the least-squares and nonlinear space-mapped sur-
rogate responses, with the least-squares PRM surrogate response plotted for com-
parison (second of three first-order datasets)

Figure 59. Scatterplot for both the least-squares and nonlinear space-mapped sur-
rogate responses, with the least-squares PRM surrogate response plotted for com-
parison (third and final first-order dataset)

87



Figure 60. Histograms and representative normal distribution curves for the first
and second-order least-squares surrogate models based on the second of three
second-order datasets
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Figure 61. Histogram and representative normal distribution curve for the nonlinear
surrogate model based on the second of three second-order datasets (second-order
LS PRM surrogate data plotted for comparison)
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Figure 62. Histograms and representative normal distribution curves for the first
and second-order least-squares surrogate models based on the third of three second-
order datasets
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Figure 63. Histogram and representative normal distribution curve for the nonlinear
surrogate model based on the third second-order dataset (second-order LS PRM
surrogate data plotted for comparison)
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Figure 64. Scatterplot showing the surrogate model predictions against the true
high-fidelity response for the first and second-order LS surrogate models for the
first of three datasets

Figure 65. Scatterplot showing the surrogate model predictions against the true
high-fidelity response for the second-order LS surrogate models as well as the non-
linear polynomial-based SM surrogate for the first of three datasets
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Figure 66. Scatterplot showing the surrogate model predictions against the true
high-fidelity response for the first and second-order LS surrogate models for the
second of three datasets

Figure 67. Scatterplot showing the surrogate model predictions against the true
high-fidelity response for the second-order LS surrogate models as well as the non-
linear polynomial-based SM surrogate for the second of three datasets
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Figure 68. Scatterplot showing the surrogate model predictions against the true
high-fidelity response for the first and second-order LS surrogate models for the
third dataset

Figure 69. Scatterplot showing the surrogate model predictions against the true
high-fidelity response for the second-order LS surrogate models as well as the non-
linear polynomial-based SM surrogate for the third dataset
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Figure 70. Scatterplot showing the surrogate model predictions against the true
high-fidelity response for the kriging-based SM surrogate and the traditional kriging
surrogate based on the same 58 sample data points from the first kriging dataset
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